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Abstract

We present a novel approach for real-time joint reconstruc-
tion of 3D scene motion and geometry from binocular
stereo videos. Our approach is based on a novel variational
halfway-domain scene flow formulation, which allows us
to obtain highly accurate spatiotemporal reconstructions
of shape and motion. We solve the underlying optimization
problem at real-time frame rates using a novel data-parallel
robust non-linear optimization strategy. Fast convergence
and large displacement flows are achieved by employing a
novel hierarchy that stores delta flows between hierarchy
levels. High performance is obtained by the introduction of
a coarser warp grid that decouples the number of unknowns
from the input resolution of the images. We demonstrate
our approach in a live setup that is based on two commod-
ity webcams, as well as on publicly available video data.
Our extensive experiments and evaluations show that our
approach produces high-quality dense reconstructions of
3D geometry and scene flow at real-time frame rates, and
compares favorably to the state of the art.

1. Introduction
Many tasks in computer vision, such as performance capture,
free-viewpoint video and 3D motion understanding, require
dynamic scene reconstruction from only a few video cam-
eras. Dynamic scene reconstruction comprises the estimation
of 3D geometry and its motion over time, which has been
coined scene flow by Vedula et al. [49], in analogy to ‘optical
flow’ which describes 2D motion of points over time. The
3D motion of points cannot be accurately estimated in isola-
tion from the 3D geometry as depth information is required
for computing the 3D motion of points. Unlike structure-
from-motion, scene flow does not assume a static scene, but
objects in the scene can move about freely and deform non-
rigidly. The estimation of scene flow from RGB images in
a geometrically well-constrained way therefore requires as
input two sets of stereo (binocular) images for consecutive
time steps. In recent years, scene flow has been an important
ingredient in many real-world applications, including those

mentioned before, like 3D motion understanding in automo-
tive scenarios [34, 52], facial performance capture [48, 53]
and free-viewpoint video [31].

Recently, real-time capable approaches for computing
scene flow from specialized RGB-D cameras were proposed.
However, existing approaches for computing dense scene
flow from RGB images (without depth) require considerable
computation time, in the order of minutes per frame (see
KITTI scene flow evaluation 2015 [34]). This is because
most dense scene flow approaches use variational formu-
lations that result in large systems of equations with mil-
lions of unknowns that are computationally expensive to
solve, despite efficient coarse-to-fine hierarchical optimiza-
tion schemes. The high computational complexity severely
limits the applicability of these existing approaches.

In this paper, we thus propose the first approach for es-
timating dense scene flow and scene geometry at real-time
rates (>30 Hz) from binocular RGB video. Even with the
computational processing power of modern GPUs, existing
dense binocular approaches are far from real-time perfor-
mance, or achieve at best near-real-time rates using FPGAs
[52]. To achieve the real-time goal on a standard computer,
we therefore introduce a new scene flow parameterization in
terms of a spatiotemporal halfway domain that lies conceptu-
ally halfway between both camera viewpoints and between
the two time steps (see flow illustration in Figure 1). In addi-
tion, we propose a novel, mesh-based coarse-to-fine warping
scheme that accumulates pixel-level evidence within grid
cells while dramatically reducing the number of unknown
flow variables that need to be optimized. During the coarse-
to-fine warping, we leverage the GPU to efficiently bootstrap
the computation of occlusions masks and illumination cor-
rection maps. We implemented a new data-parallel optimiza-
tion strategy that incorporates robust norms on a commodity
graphics card, which enables our scene flow technique to be
the first dense RGB-only method to achieve real-time frame
rates (30 Hz). We show reconstruction results obtained with
our live stereo webcam setup. In addition, we compare to the
scene flow approach of Valgaerts et al. [47] (on the datasets
of Valgaerts et al. [48]) and show reconstruction results on
high-quality stereo pairs [8, 44].
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2. Related Work
Stereo correspondence – the computation of a disparity
map from two rectified input images – is a long-standing
problem in computer vision that has seen a large variety
of techniques published over the last few decades [3, 43].
While our approach is not primarily aimed at computing
just stereo disparity maps, as we also compute 3D scene
flow over time, our approach can be adapted to stereo recon-
struction by disabling the temporal component. We therefore
start by briefly reviewing the most relevant work from the
stereo literature. The first real-time approaches for stereo
correspondence required custom hardware [7], but the ad-
vent of graphics processing units (GPUs) made it even easier
to achieve real-time performance. At first, techniques im-
plemented simple local stereo matching approaches with
different cost aggregation schemes such as sum-of-squared-
differences [57], adaptive aggregation [51] or others [18].
Later, more advanced stereo matching techniques were also
ported and adjusted to work efficiently on GPUs, such as hier-
archical belief propagation [56] or adaptive support weights
using the bilateral grid [41]. However, these approaches of-
ten sacrifice quality for speed, which is an inherent trade-off.
High-resolution, high-quality disparity maps can for exam-
ple be computed with approaches based on bilateral space
stereo [4] or mesh-based image warping [8, 44, 45, 60]. Most
recently, deep neural networks have shown remarkable per-
formance in stereo correspondence finding [11, 32, 59], and
even directly estimating homographies [13].

The goal of scene flow techniques is to compute the mo-
tion within a scene over time, for every visible 3D point
between two time steps. Many approaches have been pro-
posed in recent years for computing scene flow from different
visual input modalities, in particular RGB or RGB-D videos.
The proposed approaches include voxel coloring based on
controlled multi-view camera setups [49], tracking of points
and surfels [14], growing of correspondence seeds [10], non-
rigid scene registration [5], particle-based estimation [19],
semi-global [55] or wide-baseline matching [40]. The most
common class of scene flow approaches, including ours, are
variational methods, for both RGB [6, 24, 25, 37, 39, 47, 52]
and RGB-D inputs [16, 27, 46], as they provide dense, con-
tinuous and strongly regularized solutions.

Many recent methods focus on estimating scene flow
from RGB-D videos captured with consumer depth cam-
eras [16, 19, 22, 23, 27, 29, 38, 46, 58]. Some of them
also achieve real-time frame rates [2, 26], but in contrast to
our RGB-based method, they use a special sensor to obtain
depth maps. The best-performing methods on the (RGB-
only) KITTI 2015 scene flow benchmark [34] enforce strong
motion priors, like affine [62] or piece-wise rigid motions
[34, 50] that are ideal for the driving scenario. However,
our goal is to reconstruct general non-rigid dynamic scenes
with a stereo camera pair, in which case many of these mo-

Algorithm 1 Variational Halfway Domain Scene Flow
(S, O, L) = Initialization();
for i = 1 . . . num_levels do
S = Compute_Scene_Flow(S, O, L);
O = Occlusion_Maps(S);
L = Illumination_Maps(S);
Prolongation(S, O, L);

end for

tion priors may be violated and counterproductive. Recently
released datasets with synthetic ground truth also include
non-rigid scenes [33]. Like most previous binocular RGB
approaches [e.g. 47, 52], our technique computes scene flow
between two consecutive time steps of stereo video. As op-
posed to the RGB-D domain, dense binocular RGB-only
variational scene flow computation at true real-time frame
rates of 30 Hz or more has not been shown so far. Wedel et
al. [52] achieved 20 Hz for 320×240 resolution videos using
an implementation with a GPU and an FPGA.

Scene flow estimation is also connected to non-rigid
structure-from-motion [e.g. 1, 12, 20, 36, 42, 64], although
these approaches often apply strong motion priors and work
best for small motions. Another area of work related to ours
is spatiotemporal stereo matching [28, 41, 61], which gen-
erally assumes static camera setups. As discussed in the
introduction, scene flow is an essential ingredient for many
applications, such as free-viewpoint video [31], facial perfor-
mance capture [48, 53], and motion understanding [34, 52].
Our work lifts the major computational barrier of previous
scene flow approaches by demonstrating the first technique
for real-time dense variational scene flow estimation from
two RGB videos.

3. Variational Halfway Domain Scene Flow
Given two synchronized input camera streams (this can be
achieved in hardware or software [e.g. 15, 17, 21, 35]), the
goal of our dynamic scene reconstruction approach is to
compute the dense 3D geometry and its motion over time. In
all our live experiments, we use a custom commodity stereo
rig built using two Logitech HD Pro C920 webcams. The
captured live streams are assumed to be synchronized.

Similar to Valgaerts et al. [47], we parametrize scene
flow using three unique flow fields: the stereo, motion and
difference flow field. We solve for the scene flow in a hi-
erarchical coarse-to-fine fashion using a variational scene
flow approach (see Algorithm 1). During optimization, we
bootstrap the computation of occlusion maps by rendering a
triangulated version of the scene. We also compute illumi-
nation correction maps based on the per-level results. These
occlusion and illumination correction maps are computed af-
ter the optimization on a level is finished and are upsampled
(‘prolongated’) to the next finer hierarchy level to constrain
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the energy. In the following, we provide more details on
the used scene flow parameterization and how we check for
flow validity. Details on the illumination and occlusion map
computation are provided in Section 5.

3.1. Halfway Domain Scene Flow Geometry

We extend the idea of the halfway correspondence domain
[30] to the context of scene flow, as illustrated in Figure 1.
We consider two monochrome stereo image pairs Itc, where
c ∈ {0, 1} denotes the camera index (0: left, 1: right) and
t∈{0, 1} denotes the time step (0: previous, 1: current). The
four captured images define the corners of the scene flow
geometry. The five in-between frames define intermediate
states of warping between the captured images based on the
flow data. We define the scene flow S as a combination of
three flows (stereo, motion and difference) relative to the
halfway domain in the middle. The two intermediate images
to the left and right of the halfway domain can be thought
of as being captured by virtual cameras at the halfway time
step. The top and bottom intermediate images can be thought
of as being captured by a virtual in-between camera. The
pixels of the halfway domain (given by the integer pixel grid
positions xi∈N2) can be mapped to the four input images by
combining the per-pixel stereo {si∈R2}Ni=1 (blue), motion
{mi ∈R2}Ni=1 (yellow) and difference flow {di ∈R2}Ni=1

(red), where N is the number of pixels in the image. The
direction of the arrows indicates the target space of the flow
field. Arrows pointing from left to right and top to bottom
represent positive signs, otherwise the sign is negative.

3.2. Binocular Scene Flow Consistency

We consider the flows between all combinations of input
frame pairs consistent if every pixel of one input image is
mapped to the corresponding pixel in all other input images
that see the same 3D surface point. The consideration of
all different mappings between the four input images gives
rise to a total of six different consistency checks. Note that
we only model the checks in forward direction for higher
efficiency. Since checking for the same surface point is im-
possible, we at first relax the consistency condition to a
brightness constancy check. The first two checks are the
stereo flow consistency checks, which map between the two
cameras of the stereo pairs at corresponding time steps:

d0(xi) = I01 (xi + si −mi − di)− I00 (xi − si −mi + di), (1)

d1(xi) = I11 (xi + si +mi + di)− I10 (xi − si +mi − di). (2)

The second pair of checks model motion flow consistency,
which considers images captured by the same camera at
consecutive time steps:

d2(xi) = I10 (xi − si +mi − di)− I00 (xi − si −mi + di), (3)

d3(xi) = I11 (xi + si +mi + di)− I01 (xi + si −mi − di). (4)

Figure 1. Binocular halfway-domain scene flow geometry. Note
that arrows pointing from left to right and top to bottom represent
flows with positive signs, otherwise the sign is negative.

Finally, the cross consistency checks consider the images
captured by different cameras at different time steps:

d4(xi) = I11 (xi + si +mi + di)− I00 (xi − si −mi + di), (5)

d5(xi) = I10 (xi − si +mi − di)− I01 (xi + si −mi − di). (6)

Here we formulated consistency only in terms of brightness
constancy. In the following, we will also consider gradient
constancy to define a matching criterion that is more robust
to appearance and lighting changes.

3.3. Scene Flow Parameterization

Different from previous approaches, we parameterize the
per-pixel flow fields based on a uniform deformation lattice
with a coarser resolution than the captured input images, to
achieve real-time performance. This helps to resolve am-
biguities in flow computation, since multiple input pixel
observations influence the unknown displacement at each
grid point. In addition, the introduction of this deformation
proxy reduces the number of unknowns and thus leads to
higher efficiency. In all our experiments, we used a coars-
ening factor of 2, meaning that we have a deformation grid
point on every second pixel. Since we parameterize the per-
pixel displacements based on a coarser resolution warp grid,
we obtain in-between flow values via bilinear interpolation.
For example, the per-pixel stereo flow can be obtained based
on the G stereo flow deformation nodes {gsk}Gk=1 by:

si =

G∑
k=1

αsi,k · gsk. (7)

Here, the αsi,k are the bilinear interpolation weights for the
per-pixel stereo flow si. Note that for a particular i, αsi,k
defines a sparse partition of unity over the G grid points
(only four k’s have non-zero αsi,k for any i). Similar relations
also hold for the motion and difference flow fields.
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4. Spatiotemporal Scene Flow Objective
Similar to previous work [47], we cast finding the scene
flow that best explains the binocular input images in two
successive time steps as a variational energy minimization
problem. The objective function takes into account both
spatial alignment of the inputs warped to the halfway-domain
reference frame and the validity of the flow fields. Therefore,
our non-linear scene flow objective E is a mixture of spatial
alignment Ealign and regularization constraints Ereg:

E(S) = Ealign(S) + wregEreg(S). (8)

Here, we parameterize the unknown per-pixel scene flow
based on a vector S that stacks the 3G unknown stereo{
gsk
}G
k=1

, motion
{
gmk
}G
k=1

and difference flow
{
gdk
}G
k=1

control points. The regularization weight wreg balances align-
ment accuracy with robustness against outliers due to noise
and featureless regions. In the following, we provide details
on the employed constraints.

Spatiotemporal Scene Flow Alignment The alignment
objectiveEalign enforces that the two stereo pairs captured for
two subsequent time steps align well in the halfway-domain
reference frame. Since we consider both stereo and temporal
motion constraints, this leads to the following spatiotemporal
scene flow alignment constraint:

Ealign(S) = wphotoEphoto(S) + wgradEgrad(S). (9)

The quality of alignment of the warped observations in the
input frame is quantified based on two terms that model pho-
tometricEphoto (Section 4.1) and gradient-domainEgrad (Sec-
tion 4.2) alignment constraints, respectively. The weights
wphoto and wgrad define the relative importance of these terms.

Spatial Regularization Constraints Recovering the un-
known scene flow S from the two captured stereo pairs is a
challenging problem due to noise in the image acquisition
process and ambiguities due to featureless image regions. To
allow for the robust estimation of high-quality scene flow de-
spite these challenges, we propose an efficient regularization
strategy based on three terms:

Ereg(S) = wsmoothEsmooth(S)+wepiEepi(S)+wmagEmag(S).
(10)

The first termEsmooth (Section 4.3) enforces the local smooth-
ness of the estimated flow fields. This term allows to handle
noisy input data and bridges the uncertainty created by miss-
ing or incorrect alignment constraints in featureless regions.
The second term Eepi constrains the stereo flow to be con-
sistent with the epipolar geometry of the binocular camera
setup. Different to previous methods, such as Valgaerts et al.
[47], we do not manually linearize this constraint, leading to
a better approximation of the derivatives. Finally, the third
term Emag (Section 4.5) constrains the flows to a reasonable
magnitude leading to higher robustness. The weights wsmooth,
wepi and wmag influence the relative importance of the terms.

4.1. Photometric Alignment

We enforce the photometric alignment of the captured input
images to the halfway-domain reference frame based on a
brightness constancy constraint:

Ephoto(S) =

N∑
i=1

5∑
k=0

V (xi) ·W (xi) · Φ
(
dk(xi)

)
. (11)

The visibility map V (xi) encodes the visibility of the associ-
ated 3D point (1: visible, 0: not visible). Different from many
related methods, we take visibility into account based on
computed per-pixel occlusion maps, which are bootstrapped
based on a hierarchical optimization scheme (Section 5.3).
The weightW (xi) is used for pruning outliers based on color
similarity: it is one if the residual per-pixel color distance in
the reference frame is smaller than a threshold εp =0.2, and
zero otherwise. The functions dk are the flow consistency
constraints in Section 3.2. Instead of a least-squares formu-
lation, we use the robust pseudo-Huber penalty function for
increased robustness against outlier correspondences:

Φ(x) =
√
x2 + ε2. (12)

We use ε=0.001 in all our experiments.

4.2. Gradient Domain Alignment

In addition to the photometric alignment term, we also use a
gradient domain alignment constraint in the reference frame:

Egrad(S)=

N∑
i=1

5∑
k=0

V (xi)·W (xi)·Φ
(
‖∇dk(xi)‖2

)
. (13)

This gradient domain measure is more robust to differences
in the response functions of the used cameras as well as tem-
poral illumination changes than just a brightness constancy
term would be. Φ again denotes the robust pseudo-Huber
penalty function, V encodes visibility and W prunes outliers
based on color dissimilarity.

4.3. Flow Field Smoothness

To increase the robustness against noise and featureless re-
gions in the input images, we incorporate local smoothness
of the three flow fields (motion, stereo and difference flow)
by enforcing neighboring displacements to be similar:

Esmooth(S) =

G∑
i=1

∑
j∈Ni

∑
f∈{s,m,d}

wiwf

∥∥∥gfi − gfj

∥∥∥2. (14)

The three weights wf (for f ∈{s,m, d}) balance the smooth-
ness of the stereo, motion and difference flow, respectively.
The per-pixel weight wi takes into account how discrimina-
tive a small 3×3 pixel region around the ith grid point is and
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hence how well it can be tracked. For featureless regions, wi
is set to a high value, which strengthens regularization. We
compute this weight by analyzing the two eigenvalues of the
auto-correlation matrix of the image patches.

4.4. Epipolar Geometry Consistency Constraint

For increased robustness and to further constrain the flow
fields, we enforce the stereo flow to be consistent with the
epipolar geometry of the fixed stereo camera setup:

Eepi(S) =

G∑
i=1

[
(l0i )
>F(r0i )

]2
+
[
(l1i )
>F(r1i )

]2
. (15)

Here, F is the fundamental matrix and the 3D vectors lti and
rti denote the homogeneous coordinates of reference grid
point positions gxi transformed to the left and right camera,
respectively. The transformed 2D reference positions are:

l̂0i = gx
i − gs

i − gm
i + gd

i , r̂0i = gx
i + gs

i − gm
i − gd

i , (16)

l̂1i = gx
i − gs

i + gm
i − gd

i , r̂1i = gx
i + gs

i + gm
i + gd

i . (17)

This constraint effectively enforces that corresponding pixels
in the images are close to the corresponding epipolar line.
Different to previous methods, e.g. Valgaerts et al. [47], we
do not manually linearize this constraint and thus obtain a
better approximation of the derivatives.

4.5. Flow Field Magnitude

We further stabilize the scene flow estimation by constrain-
ing the magnitude of the three flow fields. This Tikhonov
regularization strategy is enforced based on the following
soft-constraint:

Emag(S) =

G∑
i=1

∑
f∈{s,m,d}

mf

∥∥∥gfi ∥∥∥2 . (18)

Since the stereo, motion and difference flows exhibit dif-
ferent properties, we use the weights mf , f ∈{s,m, d}, to
balance these constraints. Due to temporal coherence, we
assume the motion flow to be smaller than the stereo flow.
The difference flow is assumed to be the smallest, since it
only models the residual displacement. We introduce a hier-
archical optimization strategy in Section 5.3 that still allows
to handle large displacements on the coarser levels of the
hierarchy.

4.6. Scene Flow Parameters

The choice of parameters influences our scene flow energy
and the reconstruction results. Our approach proved quite
robust to variation in the specific parameter values. Neverthe-
less, the best reconstruction results are obtained at the sweet
spot between the data fitting term and the prior constraints.
We provide the parameters used to generate the results in the
supplemental document.

5. Data-Parallel Optimization
The number of unknowns of our non-linear scene flow ob-
jective E(S) : R6G→R depends on the number of control
points G of the used deformation grid (two unknowns for
each node of the three different flows). Since this number
directly depends on the image resolution and the grid step
size (aka the coarsening factor), this leads to a large num-
ber of unknowns, even for smaller image resolutions, for
example (2×3×800×600)/22 = 720K unknowns for an
image resolution of 800×600 pixels and a grid step size of
2 pixels. Since we aim to solve the scene flow problem at
real-time frame rates, we devise a data-parallel hierarchical
solver, following Zollhöfer et al. [66], that exploits the com-
putational power of modern graphics cards. Our hierarchy
encodes flows based on deltas to the next coarser level. This
enables us to handle large displacements and allows for fast
convergence based on a temporal propagation strategy.

We cast finding the scene flow S∗ that best explains the
input observations as a non-linear optimization problem:

S∗ = argmin
S

E(S). (19)

This is a general unconstrained optimization problem, since
the alignment objective Ealign (Equation 9) does not fit the
canonical least-squares structure of the other objectives due
to the robust pseudo-Huber penalty. Since it is challenging to
devise real-time data-parallel solvers for such problems, we
transform our problem to a non-linear least-squares problem
by taking the square root of the residuals (x ≡ (

√
x)2).

5.1. Data-Parallel Gauss-Newton Solver

After this transformation, the optimization problem fulfills
the canonical least-squares form, and can be written as a sum
of squared residual terms rm:

E(S) =

M∑
m=1

r2m(S). (20)

We stack all M residuals into the residual vector operator
R : R6G→RM and rewrite the energy E using it:

E(S) = ‖R(S)‖2 , (21)

R(S) =
[
r1(S) . . . rM (S)

]>
. (22)

Our proposed objective function comprises M= 2N + 14G
residuals rm due to the used photometric alignment (N ),
gradient-domain alignment (N ), smoothness (6G), epipolar
(2G) and flow magnitude (6G) constraints. Due to the large
number of residuals (M ) and unknowns (6G), a data-parallel
optimization strategy is of paramount importance to achieve
real-time frame rates. Since the residual vector R is still non-
linear in the unknowns S , Gauss-Newton explicitly linearizes
R based on a first-order Taylor expansion:

R(Sk+1) ≈ R(Sk) + J(Sk) · δ, δ = Sk+1 − Sk. (23)
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Here, J(Sk) is the Jacobian of R evaluated at the solution
after k iterations. The Jacobian is computed based on analyt-
ical derivatives. The resulting least-squares problem to find
optimal updates δ∗ is:

δ∗ = argmin
δ
‖R(Sk) + J(Sk) · δ‖2. (24)

The optimum is computed by solving the associated normal
equations based on a data-parallel preconditioned conjugate
gradient (PCG) [66] solver. Similar to Zollhöfer et al. [65]
and Wu et al. [54], we also employ a domain decomposition
strategy for higher performance, and a hierarchical optimiza-
tion strategy to speed up convergence. However, in contrast,
we employ a hierarchy of delta updates that allows for a
better temporal initialization strategy and the computation of
large displacements. This strategy also seamlessly integrates
with our flow magnitude constraints Emag (Section 4.5), en-
abling the computation of large flow displacements, since
we only encourage the deltas to be small.

5.2. Domain Decomposition

We divide the problem into small subproblems based on
a subdivision of the halfway-domain reference frame into
small square subdomains of size 16×16 pixels (plus a bound-
ary of 2 pixels). The optimization is then performed using
multiple data-parallel Alternating Schwarz [63, 65] itera-
tions. In each iteration, subproblems are locally solved based
on one step of data-parallel Gauss-Newton (PCG for linear
system), and the subdomain data exchange is handled via
global memory. During PCG, all required data is kept in
shared memory for increased performance.

In contrast to previous work [54, 65, 66], we precompute
the non-zero entries of J>J for the alignment term (9×3×2×2
per warp grid point) and read them on demand. This strategy
is more efficient than evaluating them on the fly, since the
computation of the system matrix for the alignment term
is expensive due to the combinatorial explosion caused by
every grid point depending on multiple pixels. Regularizers
are still applied on-the-fly in each iteration step.

5.3. Delta Hierarchy for Fast Optimization

Our optimization strategy works in a coarse-to-fine manner,
but in contrast to previous work [54, 65, 66], we use a hi-
erarchy of delta flows (still with a downsampling factor of
2). This means that each level only stores and computes an
offset with respect to the next coarser one. This helps fast
convergence and the computation of large displacement flow
fields. We flip-flop between solving and upsampling the re-
sults to the next finer level based on bilinear interpolation
until the finest resolution level is reached. The number of
levels used in our hierarchy depends on the resolution of the
input images.

In the first frame, all flows are initialized to zero. In subse-
quent frames, we initialize the flow fields based on the results

obtained in the previous time step. Based on the assumption
of constant velocity, we use the computed motion flow to
propagate all flow estimates from the previous to the next
time step. Since we employ a delta hierarchy, we transfer the
delta flows on each level separately.

We also use the hierarchy to bootstrap occlusion maps for
visibility computation. To this end, we render the currently
estimated geometry on every level from the camera views,
and determine all visible pixels based on a z-buffer. The oc-
clusion maps are interpolated to the next finer level and used
to prune invisible pixels in the alignment term (Equation 9).

In a similar fashion, the illumination correction is ap-
plied on every hierarchy level. To this end, we compute the
intensity residual between the two stereo pairs in the ref-
erence frame, and extract the low-frequency components
by convolution with a Gaussian filter (σ=3.2 pixels). The
extracted low-frequency components are attributed to illumi-
nation and/or differences in the cameras’ response functions.
We upsample the illumination differences using a box filter
to the next finer level and use them to normalize the input
images.

6. Results

We evaluate our approach on live data captured using a
custom stereo webcam rig and also on publicly available
datasets. The reconstructions based on our stereo rig are
obtained at real-time frame rates. In addition, we apply our
approach to the high-resolution, high-quality stereo data of
Schneider et al. [44], and Blumenthal-Barby and Eisert [8].
Our approach scales well to this high-resolution data in terms
of reconstruction quality and runtime performance. We also
compare our approach to the slow, but high-quality, off-line
scene flow approach of Valgaerts et al. [47]. Our approach
obtains similar quality at much higher frame rate.

6.1. Live Results

We use two Logitech HD Pro C920 webcams to capture a
stereo video stream at 1280×720 pixels (0.9 MP). The cam-
eras’ refresh rate is 30 Hz. Using our data-parallel solution
strategy, we compute the scene flow at the refresh rate of
the cameras. Figure 2 shows stereo reconstruction results
and the corresponding scene flow obtained using our custom
stereo webcam rig. As can be seen, we handle fully dynamic
scenes and obtain detailed reconstructions.

6.2. Runtime Performance and Convergence

Figure 3 plots the runtime of our approach with respect to
the resolution of the input images and different grid step
sizes. As can been seen, the runtime of our approach scales
linearly with the input image resolution. We obtain full real-
time frame rates for up to 0.9 MP. For the resolution of our
live setup (1280×720 pixels = 0.9 MP), we require 31 ms
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Figure 2. Live reconstruction results.

Figure 3. Runtime performance of our approach with different grid
step sizes: red = 1, blue = 2, gray = 4.

to compute the scene flow. This high performance is a di-
rect result of our data-parallel optimization strategy and our
specifically tailored scene flow objective. For all timings, we
used 5 hierarchy levels. On the two finest levels, we perform
2 non-linear iterations. On all other levels, we perform 5
non-linear iteration steps. In each non-linear Gauss-Newton
step, we use 5 PCG iterations (with 5 patch iterations each)
to solve the underlying system of normal equations.

We next analyze the convergence behavior of our solver
for the finest hierarchy level. To this end, we reconstructed
the scene flow between two time steps. In this evaluation, we
apply 5 non-linear Gauss-Newton steps with 5 PCG steps
(each using 5 patch iterations). Figure 4 plots the linear
residual of the normal equations. For each single non-linear
step, the error is always decreased by the PCG iteration steps.
The error peaks every 5 steps, which marks the beginning
of each new non-linear Gauss-Newton iteration. At these
points, the problem is newly linearized using Taylor series
expansion, leading to new normal equations. Therefore, the
error of this new system is higher, but it is directly decreased
in the following iterations. Note that these new systems
are better approximations of the real function, since the
linearization is performed closer to the optimum.

Figure 4. Convergence plot. See Section 6.2 for discussion.

Figure 5. Comparison to the approach of Valgaerts et al. [47] on
the ‘Volker’ dataset [48].

Figure 8. Our motion flow on the ‘Volker’ dataset [48].

6.3. Comparison to Valgaerts et al. [47]

We compare our approach to the slow, but high-quality off-
line state-of-the-art scene flow approach of Valgaerts et al.
[47], see Figure 5. As can be seen, our approach obtains
reconstructions of similar quality. Note that our approach is
three orders of magnitudes faster than theirs. Due to the high
resolution of the input data (1920×1088 pixels = 2.1 MP),
we use 5 non-linear iterations with 5 PCG steps (each with 5
patch iterations). The employed hierarchy uses 5 levels, as
before. With our approach, we obtain the scene flow for a
single pair of frames in only 110 ms, while Valgaerts et al.’s
method [47] requires more than 6 minutes per frame (more
than 3,000 times slower). We attribute this performance ad-
vantage of our approach to the smart design of our objective
function, including the reduction of unknowns through our
coarser warp grid, that allows to apply our highly efficient
data-parallel non-linear least-squares framework. The geom-
etry and motion obtained by our approach is of very high
quality, as shown in Figure 6 and Figure 8.
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Figure 6. Our high-quality reconstruction results on the ‘Volker’ dataset [48].

Figure 7. Our high-quality reconstruction results on the data of Schneider et al. [44] (left) and Blumenthal-Barby and Eisert [8] (right).

Figure 9. Comparison to Blumenthal-Barby and Eisert [8].

6.4. Comparison to Warping-based Approaches

We also applied our approach to the stereo reconstruction
problem. To this end, we use publicly available high-quality
stereo images [8, 44] with an input image resolution of
4288×2848 pixels (12 MP). Since only a single stereo pair
is available for these scenes, we initialize both time steps us-
ing the same image pair. Our approach obtains high-quality
reconstruction results, shown in Figure 7, which are on par
with previous approaches, see also Figure 9. We obtain these
results at a much shorter computation time. Our approach
requires only 700 ms for reconstruction, and is two orders
of magnitude faster than the approach of Blumenthal-Barby
and Eisert [8], which requires several minutes. We attribute
this difference in runtime performance to the design of our
energy function and our data-parallel solution strategy. Note
that if a sequence of stereo frames is available, our approach
is also able to estimate the motion flow.

7. Limitations
Our approach obtains high-quality scene flow at real-time
frame rates. Nevertheless, it is subject to a few limitations.
We summarize them here and give ideas for future work
in this domain. Sometimes our mip-map-based hierarchical
downsampling strategy is too coarse. Therefore, distinctive
regions are lost on coarser levels. This complicates the scene
flow computation. A finer hierarchy in combination with
feature-preserving downsampling [9] could alleviate this
problem. Currently, our stereo setup has to be precalibrated
before use. This is a cumbersome process and has to be re-

peated every time the camera setup changes. In the future,
methods could be investigated to jointly optimize for the
extrinsic camera parameters to allow for fully dynamic cam-
era setups, similar to Valgaerts et al. [47]. Like every other
passive stereo reconstruction approach, our approach suffers
from problems in featureless regions of the scene. In these
regions, the data term is not sufficiently discriminative and
the used regularization terms take over. If the scene violates
these prior assumptions, the obtained reconstructions do not
match reality. Currently, in the first frame, we initialize the
stereo and motion flow to zero. Therefore, our approach
sometimes needs a few frames to converge. In the future,
smart initialization strategies could be explored to jump-start
the optimization process from the very first frame.

8. Conclusion

We presented an approach for real-time joint reconstruction
of motion and geometry from stereo RGB videos. To this
end, we extended the concept of the halfway domain to scene
flow. Our approach achieves real-time performance based
on a novel data-parallel solver that exploits the computa-
tional horsepower of modern graphics cards. Comparisons
and evaluations show that high-quality scene flow estimates
can be obtained at the cameras’ refresh rate using varia-
tional optimization. We believe that the availability of scene
flow data at real-time frame rates is an important building
block for many other approaches, such as real-time non-rigid
structure-from-motion.
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