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Abstract
We present a novel method for the interactive
markerless reconstruction of human heads
using a single commodity RGB-D sensor. Our
entire reconstruction pipeline is implemented
on the GPU and allows to obtain high-quality
reconstructions of the human head using an in-
teractive and intuitive reconstruction paradigm.
The core of our method is a fast GPU-based
non-linear Quasi-Newton solver that allows
us to leverage all information of the RGB-D
stream and fit a statistical head model to the ob-
servations at interactive frame rates. By jointly
solving for shape, albedo and illumination
parameters, we are able to reconstruct high-
quality models including illumination corrected
textures. All obtained reconstructions have a
common topology and can be directly used
as assets for games, films and various virtual
reality applications. We show motion retarget-
ing, retexturing and relighting examples. The
accuracy of the presented algorithm is evaluated
by a comparison against ground truth data.

Keywords: Virtual Avatars, Model-based
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Optimization, GPU, Statistical Head Models

1 Introduction

The release of the Microsoft Kinect made a
cheap consumer level RGB-D sensor available
for home use. Therefore, 3D scanning technol-
ogy is no longer restricted to a small group of
professionals, but is also accessible to a broad
audience. This had a huge impact on research in

Figure 1: Hardware Setup: The RGB-D stream
of a single PrimeSense Carmine is
used to reconstruct high-quality head
models using an interactive and intu-
itive reconstruction paradigm.

this field shifting the focus to intuitive and inter-
active paradigms that are easy-to-use.

This work presents a model-based reconstruc-
tion system for the human head that is intu-
itive and leverages a commodity sensor’s RGB-
D stream interactively. Using the presented sys-
tem a single user is able to capture a high-quality
facial avatar (see Figure 1) by moving his head
freely in front of the sensor. During a scan-
ning session the user receives interactive feed-
back from the system showing the current recon-
struction state. Involving the user into the recon-
struction process makes the system immersive
and allows to refine the result. Our system effec-
tively creates a high-quality virtual clone with a
known semantical and topological structure that
can be used in various applications ranging from
virtual try-on to teleconferencing.



Figure 2: Comparison: Model-free approaches
(Kinect Fusion, 2563 voxel grid) are
prone to oversmoothing. In contrast to
this, our model-based approach allows
to estimate fine-scale surface details.

In the following, we discuss related work
(Section 2), present an overview of our recon-
struction system (Section 3) based on a fast GPU
tracking and fitting pipeline (Section 4-6). We
sum up by showing reconstruction results, appli-
cations and ground truth comparisons (Section
7) and give ideas for future work (Section 8).

2 Related Work

3D-Reconstruction from RGB-D images and
streams is a well studied topic in the geome-
try, vision and computer graphics communities.
Due to the extensive amount of literature in this
field, we have to restrict our discussion to ap-
proaches closely related to this work. Therefore,
we will focus on model-free and model-based
algorithms that are suitable for capturing a de-
tailed digital model (shape and albedo) of a hu-
man head. We compare these approaches based
on their generality and applicability and moti-
vate our decision for a model-based reconstruc-
tion method.

2.1 Model-free 3D-Reconstruction

3D-Reconstruction mainly is about the acquisi-
tion of a real world object’s shape and albedo.
This includes capturing and aligning multiple
partial scans [1, 2, 3] to obtain one complete
reconstruction, data accumulation or fusion [4]
and a final surface extraction step [5] to obtain a
mesh representation. Systems based on a direct
accumulation of the input sample points [6, 7]
preserve information, but scale badly with the
length of the input stream. In contrast, systems

Figure 3: Denoising: Statistical noise removal
(right) better deals with noisy input
than spatial filtering approaches (left).
Fine scale features are retained, while
still effectivly dealing with noise.

based on volumetric fusion [4] accumulate the
data directly into a consistent representation, but
do not keep the raw input for further postpro-
cessing steps. The Kinect Fusion framework
[8, 9] is such a system and made real-time 3D-
Reconstruction with a moving RGB-D camera
viable for the first time. Because this approach
deals with noise by spatial and temporal filter-
ing, it is prone to oversmoothing (see Figure
2). Model-free approaches allow to digitize ar-
bitrary real world objects with the drawback of
the output to be only a polygon soup [5] with
no topological and semantical information at-
tached. Therefore, these reconstructions can not
be automatically animated or used in virtual re-
ality applications.

2.2 Model-based 3D-Reconstruction

In contrast to model-free approaches, model-
based methods heavily rely on statistical pri-
ors and are restricted to a certain class of ob-
jects (i.e., heads or bodies). This clear disadvan-
tage in generality is compensated by leveraging
the class-specific information built into the prior
[10, 11, 12, 13]. In general, this leads to higher
reconstruction quality, because noise can be sta-
tistically regularized (see Figure 3) and infor-
mation can be propagated to yet unseen and/or
unobservable regions. These properties make
model-based reconstruction algorithms the first
choice for applications that are focused on one
specific object class.

Blanz and colleagues reconstruct 3D models
from RGB and RGB-D input [10, 11] by fitting
a statistical head model. These methods require
user input during initialization and registration
is performed in a time consuming offline pro-



Figure 4: Per-Frame Pipeline (from left to right): The RGB-D input stream is preprocessed, the rigid
head pose is estimated, data is fused and a joint optimization problem for shape, albedo and
illumination parameters is solved iteratively.

cess. Statistical models have also been exten-
sively used to reconstruct templates for track-
ing facial animations [14, 15, 16]. While the
tracking is real-time, the reconstruction is per-
formed offline. In addition, these methods only
use depth and do not consider the RGB chan-
nels which allows to jointly estimate the illu-
mination and can be used to improve tracking
[17, 18]. Other methods specifically focused on
reconstruction are either offline or do not use all
the data of the RGB-D stream [19, 20, 21, 22,
23, 24, 25]. In many cases, they only rely on a
single input frame.

In contrast, our method utilizes all data pro-
vided by the RGB-D stream and gives the user
immediate feedback. We specifically decided
for a model-based approach because of its su-
perior reconstruction quality and better reusabil-
ity of the created models. Applications able to
use our reconstructions range from animation
retargeting [26, 14, 15, 16] to face identification
[27, 28], as well as virtual aging [29] and try-on
[30]. The main three contributions of this work
are:

• An intuitive reconstruction paradigm that is
suitable even for unexperienced users

• The first interactive head reconstruction
system that leverages all available informa-
tion of the RGB-D stream

• A fast non-linear GPU-based Quasi-
Newton solver that jointly solves for
shape, albedo and illumination.

3 Pipeline Overview

Our reconstruction system (Figure 4) has been
completely implemented on the GPU with an
interactive application in mind. The user sits
in front of a single RGB-D sensor (see Fig-
ure 1) and can freely move his head to obtain
a complete and high-quality reconstruction. In
the preprocessing stage, the captured RGB-D
stream is bilaterally filtered [31] to remove high-
frequency noise. We back-project the depth map
to camera space and compute normals at the
sample points using finite differences. We track
the rigid motion of the head using a dense GPU-
based iterative closest point (ICP) algorithm.
After the global position and orientation of the
head has been determined we use a non-rigid
registration method that flip-flops between data
fusion and model fitting. We fuse the unfiltered
input data into a consistent mesh-based repre-
sentation that shares its topology with the statis-
tical prior. This step allows for super-resolution
reconstructions, closes holes and fairs the data
using a fast GPU-based thin-plate regularizer
[32]. The resulting faired displacements de-
fine the position constraints for non-rigidly fit-
ting the statistical model. After the best fitting
model has been computed, we use the solution
to initialize the next flip-flop step. This allows
us to temporally fair and stabilize the target cor-
respondences.



4 Head Pose Estimation

We compute an initial guess for the global head
pose using the Procrustes algorithm [33].
The required feature points
are automatically detected
using Haar Cascade Clas-
sifiers [34] for the mouth,
nose and eyes. Correspond-
ing features on the model
have been manually pres-
elected and stay constant.
Starting from this initializa-
tion, we use a fast GPU-
based implementation of a
dense ICP algorithm in the spirit of [8, 9] to
compute the best fitting rigid transformation
Φt(x) = Rtx + tt. We rasterize the model
under the last rigid transformation Φt−1 to gen-
erate synthetic position pi,j and normal images
ni,j . Projective correspondence association is
used between the input and the synthetic im-
ages. The registration error between the ren-
dered model positions and the target correspon-
dences tX (i,j) under a point-to-plane metric is:

arg min
Φ̂

∑
i,j

wi,j < ni,j , Φ̂(pi,j)− tX (i,j) >
2.

The corresponding 6x6 least
squares system is constructed
in parallel on the GPU and
solved via SVD. We set the
correspondence weights wi,j
based on distance and normal deviation and
prune correspondences (wi,j = 0) if they are
too far apart (> 2cm), the normals do not match
(> 20◦) or the pixels are not associated with
the head. The valid region for correspondence
search is selected by a binary mask that specifies
the part of the head that stays almost rigid (red)
under motion. The predicted head pose of the
current frame Φt(x) = Φ̂(x)Φt−1(x) is used as
starting point for the reconstruction of the non-
rigid shape.

5 Data Fusion

Depth data of consumer level RGB-D sensors
has a low resolution, contains holes and a lot of
noise. We use a fusion scheme similar to Kinect

Fusion [8, 9] to achieve super-resolution recon-
structions and effectivly deal with the noisy in-
put. A per-vertex displacement map is defined
on the template model to temporally accumulate
the input RGB-D stream. Target scalar displac-
ments are found by ray marching in normal di-
rection, followed by four bisection steps to re-
fine the solution. The resulting displacement
map is faired by computing the best fitting thin-
plate. We approximate the non-linear thin-plate
energy [32] by replacing the fundamental forms
with partial derivatives:

−λs∆d+ λb∆
2d = 0.

The parameters λs and λb control the stretching
and bending resistance of the surface and d are
the faired scalar displacements. These displace-
ments are accumulated using an exponential av-
erage. A fast GPU-based preconditioned gradi-
ent descent with Jacobi preconditioner is used to
solve the resulting least squares problem. The
preconditioner is constant for a fixed topology
and can be precomputed, gradient evaluation is
performed on-the-fly by iteratively applying the
Laplacian kernel to compute the bi-Laplacian
gradient component. This nicely regularizes out
noise and fills holes in the data. For RGB, we
use a one-frame integration scheme to deal with
illumination changes.

6 Estimating Model Parameters

By projecting the accumulated data into the
space of statistically plausible heads, noise can
be regularized, artifacts can be removed and in-
formation can be propagated into yet unseen re-
gions. We pose the estimation of the unknown
shape α, albedo β and illumination γ parame-
ters as a joint non-linear optimization problem.
Shape and albedo is statistically modeled using
the Basel Face Model [10, 27], illumination is
approximated using spherical harmonics. In the
following, we give details on the used statisti-
cal model, the objective function and show how
to efficiently compute best fitting parameters us-
ing a fast GPU-based non-linear Quasi-Newton
solver.



6.1 Statistical Shape Model

The used statistical shape model encodes the
shape (albedo) of 200 heads by assuming an
underlying Gaussian distribution with mean µα
(µβ) and standard deviation σα (σβ). The prin-
cipal components Eα (Eβ) are the directions of
highest variance and span the space of plausible
heads. New heads can be synthesized by speci-
fying suitable model parameters α (β):

Shape : M(α) = µα + Eαα,

Albedo : C(β) = µβ + Eββ.

Synthesis is implemented using compute
shaders. We use one warp per vertex and a
fast warp reduction to compute the synthesized
position (albedo).

6.2 Objective Function

Finding the instance that best explains the ac-
cumulated input observations is cast as a joint
non-linear optimization problem:

E(P) = λdEd(P) + λcEc(P) + λrEr(P).

The individual objectives Ed, Ec and Er rep-
resent the depth, color and statistical regular-
ization constraints. The empirically determined
weights λd = λc = 10 and λr = 1 remain fixed
and have been used for all shown examples. The
parameter vector P = (α, β, γ) encodes the de-
grees of freedom in the model. In the following,
we will discuss the different objectives and their
role in the optimization problem in more detail.

6.2.1 Depth Fitting Term

The depth fitting term incorporates the accumu-
lated geometric target positions ti into the opti-
mization problem:

Ed(P) =
n∑
i=1

||Φt(Mi(α))− ti||2.

This functional only depends on the shape pa-
rameters α and measures the geometric point-
point alignment error for every model vertex (n
vertices). Minimizing this objective on its own
is a linear least squares problem in the unknowns
α due to the linearity of the modelM.

6.2.2 Color Fitting Term

The visual similarity of the synthesized model
and the input RGB data is modeled by the color
fitting term:

Ec(P) =
n∑
i=1

||I(ti)−R(vi, ci, γ)||2,

with vi = Φt(Mi(α)) being the current ver-
tex position, ci = Ci(β) the current albedo and
I(ti) is the RGB color assigned to the target po-
sition. This part of the objective function is non-
linear in the shape α and linear in the illumina-
tion γ and albedo β. Illumination is modeled us-
ing spherical harmonics (spherical environment
map). We assume a purely diffuse material and
no self-shadowing:

R(vi, ci, γ) = ci

k∑
j=1

γjHj(vi).

Hj is the projection of the angular cosine fall-
offs on the spherical harmonics basis. We use 3
spherical harmonics bands (k = 9 coefficients
per channel) and sample 128 random directions
(Hammersley sampler) for the numerical evalu-
ation of Hj .

6.2.3 Statistical Regularization

The heart of this method is a statistical regular-
izer [10] that takes the probability of the syn-
thesized instances into account. This prevents
overfitting the input data. Assuming a Gaussian
distribution of the input, approximately 99% of
the heads can be reproduced using parameters
xi ∈ [−3σxi , 3σxi ]. Therefore, the parameters
are constrained to be statistically small:

Er(P) =

m∑
i=1

[ α2
i

σ2
αi

+
β2
i

σ2
βi

]
+

k∑
i=1

( γi
σγi

)2
.

The standard deviations σαi and σβi are known
from the shape model, σγi = 1 encodes the vari-
abilty in the illumination and has been empir-
ically determined. m specifies the number of
used principal components.

6.3 Parameter Initialization

The objective function E is non-linear in its
parameters P . Therefore, a good initial guess



is required to guarantee convergence to a suit-
able optimum. Current state-of-the-art meth-
ods heavily rely on user input in form of sparse
marker or silhouette constraints to guide the op-
timizer through the complex energy landscape.
In this work, when tracking is started, we initial-
ize the parameters by decoupling the optimiza-
tion problem into three separate linear problems
that can be solved independently. We start by
fitting the model against the detected sparse set
of markers to roughly estimate the size of the
head. As mentioned earlier, the depth objective
on its own is a linear least squares problem in
the unknown shape parameters. After search-
ing correspondences, a good approximation for
α can be computed by solving the linear system
that corresponds to the first 40 principal compo-
nents. Then, the illumination parameters γ are
estimated separately by assuming a constant av-
erage albedo. Finally, the albedo parameters β
are initialized by assuming the computed shape
and illumination to be fixed. Once the parame-
ters have been initialized, a joint non-linear op-
timizer is used to refine the solutions.

6.4 Joint Non-Linear GPU Optimizer

To refine the solutions of the uncoupled opti-
mization problems, we jointly solve for the pa-
rameters in each new input frame. We use a fast
GPU-based implementation of a Quasi-Newton
method to iteratively compute the best fit:

Pn+1 = Pn − λ(HE(Pn))−1∆E(Pn).

HE(Pn) is the Hessian matrix and ∆E the gra-
dient of E, λ controls the step size. The step
size is adaptively computed based on the change
in the residual. We use a simple approxima-
tion of the inverse Hessian for scaling the de-
scend directions. This is similar to precondi-
tioning [35]. Because of the global support of
the principal components, the derivatives with
respect to α and β are influenced by all con-
straints. Therefore, we use one block per vari-
able and a fast block reduction in shared mem-
ory to evaluate the derivatives. Per flip-flop step
we perform 2 Quasi-Newton steps. During opti-
mization we slowly increase the number of used
principal directions to avoid local minima in the
energy landscape.

Figure 5: Per-Frame Runtime: Runtime of the
different stages in our reconstruction
pipeline (in ms).

7 Results

In this section, we discuss the runtime behaviour
of our system, compare the reconstruction re-
sults to ground truth data obtained by a high-
quality structured light scanner and present ap-
plications that leverage the known semantical
structure of the reconstructed models.

7.1 Runtime Evaluation

Our reconstruction pipeline is completely im-
plemented on the GPU to allow for interactive
reconstruction sessions. The average per-frame
runtime for the examples in Figure 9 is shown in
Figure 5. We used an Intel Core i7-3770 CPU
with a Nvidia Geforce GTX 780. Note, that
for the person in the fourth row the beard could
not be faithfully recovered by the model coef-
ficents, this is due to the fact that facial hair is
not contained in the model. But the customly
generated texture captures and adds these details
to the reconstruction. For all presented exam-
ples, we used 2 flip-flop steps (with 2 Quasi-
Newton steps each) and 5 iterations of the thin-
plate solver. We start with 40 eigenvectors and
slowly increase the number to 120. Note, that
our system always remains interactive and gives
the user direct feedback during the reconstruc-
tion process. For the results in Figure 9 the com-
plete scanning sessions took about 3−5 seconds
each. In most cases, moving the head once from
right to left is sufficient to compute a high qual-
ity model.

7.2 Reconstruction Quality

To evaluate the accuracy of the presented system
we compare our reconstructions (PrimeSense
Carmine 1.09) with high-quality 3D scans cap-
tured by a structured light scanner. The scanning



Figure 6: Ground Truth Comparison: Distance
(right) between our reconstructions
(left) and high-quality structured light
scans (middle).

Figure 7: Comparison to [19]: Their reconstruc-
tion (left), ours (right).

sessions with the structured light setup took sev-
eral minutes. As can be seen in Figure 6, the ac-
tual shape difference is small and our geometry
has comparable quality. Because the eyes had to
remain closed during structured light scanning,
most of the error is located in the eye region.
The mean error was 1.09 mm, 0.81 mm and 1.19
mm respectively (from top to bottom).

We also compare our reconstructions to [19]
(see Figure 7). In contrast to their approach,
we can reconstruct the complete head, illumina-
tion correct the textures and have higher super-
resolution geometry.

7.3 Applications

In this section, we discuss some applications
that can directly use the reconstructed models,
see Figure 10. We compute a complete tex-
ture by fusing multiple frames using pyramid
blending [36], the required mask is automati-
cally computed using depth and angular thresh-
olds. The illumination parameters allow us to
compute illumination corrected textures and re-
light the head. Because of the known semanti-
cal structure, we can place a hat on the model
(virtual try-on) and add additional textures. The

Figure 10: Applications: The textured models
can be relighted, retextured and used
for virtual try-on.

known topological structure of the models al-
lows us to easily retarget animations (Figure 8).

8 Conclusion

We have presented a complete system for the re-
construction of high-quality models of the hu-
man head using a single commodity RGB-D
sensor. A joint optimization problem is solved
interactively to estimate shape, albedo and il-
lumination parameters using a fast GPU-based
non-linear solver. We have shown that the ob-
tained quality is comparable to offline structured
light scans. Because of the known topological
and semantical structure of the models, they can
be directly used as input for various virtual real-
ity applications.

In the future, we plane to add motion track-
ing to our system to animate the reconstructions.
We hope that we can leverage the reconstructed
albedo to make non-rigid tracking more robust.
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