Shading-based Refinement on Volumetric Signed Distance Functions
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Figure 1: Our method obtains fine-scale detail through volumetric shading-based refinement (VSBR) of a distance field. We scan an object
using a commodity sensor — here, a PrimeSense — to generate an implicit representation. Unfortunately, this leads to over-smoothing. Exploiting
the shading cues from the RGB data allows us to obtain reconstructions at previously unseen resolutions within only a few seconds.

Abstract

We present a novel method to obtain fine-scale detail in 3D re-
constructions generated with low-budget RGB-D cameras or other
commodity scanning devices. As the depth data of these sensors is
noisy, truncated signed distance fields are typically used to regularize
out the noise, which unfortunately leads to over-smoothed results. In
our approach, we leverage RGB data to refine these reconstructions
through shading cues, as color input is typically of much higher
resolution than the depth data. As a result, we obtain reconstructions
with high geometric detail, far beyond the depth resolution of the
camera itself. Our core contribution is shading-based refinement
directly on the implicit surface representation, which is generated
from globally-aligned RGB-D images. We formulate the inverse
shading problem on the volumetric distance field, and present a
novel objective function which jointly optimizes for fine-scale sur-
face geometry and spatially-varying surface reflectance. In order to
enable the efficient reconstruction of sub-millimeter detail, we store
and process our surface using a sparse voxel hashing scheme which
we augment by introducing a grid hierarchy. A tailored GPU-based
Gauss-Newton solver enables us to refine large shape models to
previously unseen resolution within only a few seconds.

CR Categories: 1.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Scanning;
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1 Introduction

The advent of low-cost RGB-D cameras, such as the Microsoft
Kinect, triggered the development of new algorithms that allow con-
sumers to densely scan objects at real-time frame rates. A prominent
example of this line of research is Kinect Fusion [Newcombe et al.
2011; Izadi et al. 2011] and its extensions [Roth and Vona 2012;
Whelan et al. 2012; Chen et al. 2013; NieBner et al. 2013], which
led to significant impact in the computer graphics, vision, and HCI
communities. Their efficient reconstruction of 3D environments is
beneficial to a large variety of applications, ranging from content
creation to augmented reality scenarios.

Core to these approaches is the underlying surface representation of
a truncated signed distance field (TSDF) [Curless and Levoy 1996].
This representation stores the distance values to the closest surface
point in 3D in a voxel grid, and has several advantages compared
to alternative models, such as point-based or mesh-based represen-
tations, in particular if efficiency is the goal. It enables efficient
alignment and fusion of scans, while systematically considering the
drastic noise and distortions in depth data of many RGB-D cameras.
Further, it allows scan integration without complex connectivity
and topology handling, and is the basis of many surface extraction
algorithms. Unfortunately, despite these benefits, aligning and inte-
grating depth scans on a TSDF leads to strong over-smoothing of the
surfaces, as the depth data is fused projectively using a weighted av-
erage from different viewing directions. This is further compounded
by drift due to alignment errors of input depth frames. Thus, while
TSDFs efficiently regularize noise, resulting reconstructions lack
fine-scale geometric detail. Additionally, scanning quality is limited
by the limits of the depth cameras themselves. Most of them deliver
images of much lower depth resolution than RGB resolution; depth
is also very noisy, and may contain systematic distortions. Overall,
the benefits of implicit surface representations have brought them to
be prevalent in online and offline 3D reconstruction approaches, but
they fail to capture fine-scale detail for noisy depth input. Note that
this extends beyond TSDFs, as other implicit functions have been
used as representations for 3D reconstruction; e.g., [Carr et al. 2001;
Kazhdan et al. 2006; Fuhrmann and Goesele 2014].

In this paper, we address the problem of over-smoothed TSDFs, and
propose a new approach to efficiently reconstruct fine-scale detail
on them. To this end, we leverage RGB data to refine the implicit



surface representation using shading cues. Since color input is typi-
cally of much higher resolution than the depth data, we can obtain
reconstructions with geometric detail far beyond the depth resolu-
tion of the camera itself. Operating directly on the implicit surface
representation, as opposed to previous approaches on meshes, has
several distinct advantages. The regular structure of the TSDF natu-
rally yields a spatially uniform sampling, in contrast to the overhead
required to regularly sample a mesh. Further, we employ a sparse
hashing-based scheme to store the TSDF, providing efficient storage
and fast refinement. Additionally, operating on an implicit surface
representation gives our approach versatility, as implicit surface rep-
resentations are used in many other reconstruction approaches; e.g.,
using other active triangulation sensors, laser scanning, or passive
image-based reconstruction. In addition to geometric refinement of
consumer RGB-D sensor input, we also demonstrate clear improve-
ments in other settings in Section 7.

From globally-aligned color and depth input, we estimate the in-
cident lighting distribution, and present a novel objective function
to jointly optimize for geometric refinement and dense albedo in
general and unconstrained environments. To solve this non-linear
optimization problem, we present a tailored, parallel Gauss-Newton
solver. Our TSDF structure also uses a hierarchy of resolutions,
which is required for efficient convergence. All our data structures
and algorithms are designed for efficient execution on the GPU.
Our new refinement method is geared towards RGB-D scanning,
improves over the state-of-the-art in many ways, and is based on the
following contributions:

o a formulation of the inverse shading problem on a TSDF, al-
lowing for joint optimization of fine-scale geometric detail and
dense, spatially-varying albedo (Section 5)

e an extension of the sparse voxel hashing scheme to support a
hierarchy of resolutions, which provides efficient storage and
fast refinement of TSDFs (Section 4)

e a GPU-based non-linear Gauss-Newton solver crafted to solve
for shading-based refinement on tens of millions of variables
in a few seconds (Section 6)

2 Related Work

Implicit functions are popular scene representations used in many
3D reconstruction algorithms [Hoppe et al. 1992; Carr et al. 2001;
Kazhdan et al. 2006; Fuhrmann and Goesele 2014]. Implicit models
facilitate partial scan alignment and integration without complex
topology handling (as needed for meshes). A popular variant is
the signed distance field (SDF) model which stores distances to the
surface on a voxel grid [Curless and Levoy 1996]. It was used for off-
line reconstruction of large models from partial range scans [Levoy
et al. 2000], but has also been used in real-time structured light
scanning [Rusinkiewicz et al. 2002] where its efficient storage and
simple update is beneficial.

Recently, new cheap consumer-grade RGB-D cameras, such as the
triangulation-based Kinect or time-of-flight (TOF) cameras, have
become increasingly popular for 3D scanning [Henry et al. 2012].
Some hand-held RGB-D scanning approaches resort to point-based
scene models [Keller et al. 2013; Weise et al. 2009]. However,
SDFs are the more widely used representation in recent real-time
methods. The Kinect Fusion algorithm [Newcombe et al. 2011;
Izadi et al. 2011] was one of the first to do online alignment and
integration of RGB-D depth data using weighted averaging of par-
tial scans in a truncated SDF. Several extensions of the approach
were proposed; e.g., a direct variational depth-to-SDF alignment
instead of ICP [Bylow et al. 2013], or to use a combination of such
alignment with color optimization of aligned partial SDFs [Kehl

et al. 2014]. The SDF model also simplifies consideration of the
often drastic noise in the depth data of consumer depth cameras
when integrating the scene model. Kinect Fusion stores the implicit
model on a regular grid, which limits scalability to larger scenes. To
scan larger scenes, the use of shifting volumes [Whelan et al. 2012],
hierarchical grids [Chen et al. 2013] or sparse voxel hashing data
structures [NieBner et al. 2013] was proposed. Unfortunately, most
RGB-D camera scanning approaches suffer from over-smoothed
reconstructions due to the averaging during scan integration; the
reconstructed geometric detail is thus not sufficient for many profes-
sional applications. This problem is amplified by the fact that most
RGB-D cameras have a very low depth resolution, inhibiting capture
of high geometric detail. Some methods attempt to overcome the
depth camera resolution limit by time-consuming multi-depth-frame
super-resolution from nearby RGB-D images [Schuon et al. 2009;
Cui et al. 2010], but reconstructions are still of limited detail. Other
techniques improve depth resolution by leveraging the fact that most
RGB-D cameras have drastically higher RGB resolution than depth
resolution. Another approach is to assume the alignment of color
and depth edges, which can be exploited in a joint edge-preserving
upsampling filter, such as a bilateral or multi-lateral filter [Lind-
ner et al. 2007; Kopf et al. 2007; Chan et al. 2008; Dolson et al.
2010; Richardt et al. 2012], or explicitly phrased in an optimization
problem [Park et al. 2011; Diebel and Thrun 2006]. Despite more
detailed and less noisy results, many of the approaches suffer from
texture-copy artifacts since assumptions about lighting are often
wrong and shading effects are mistaken for geometry detail. Our
approach also exploits the higher RGB resolution of consumer depth
cameras, but takes inspiration from recent progresses in scene re-
construction from single or multi-view RGB images only. Recent
methods for 3D scene reconstruction from a hand-held RGB camera
use a combination of sparse feature tracking, structure-from-motion,
and stereo to reconstruct the scene geometry by integration in an
SDF [Newcombe and Davison 2010; Pradeep et al. 2013]. How-
ever, the reconstructed models show similar over-smoothing as the
aforementioned RGB-D results. This is not only due to averaging in
the SDF, but also due to the stereo reconstruction itself, which often
requires strong regularization to find image correspondences from
scene texture [Seitz et al. 2006; Scharstein et al. 2014].

Shape-from-shading (SfS) is able to overcome some of these reso-
lution limits, and also succeeds on texture-less objects [Horn 1975;
Zhang et al. 1999]. SfS is well-understood, particularly when sur-
face reflectance and light source positions are known [Prados and
Faugeras 2005]. It can also refine coarse image-based shape models,
for instance from multi-view stereo [Beeler et al. 2012], even if
they were captured under general uncontrolled lighting with several
cameras [Wu et al. 2011; Wu et al. 2013]. To this end, illumination
and albedo distributions, as well as refined geometry, are found via
inverse rendering optimizations. SfS is inherently ill-posed in un-
controlled scenes, and achieving compelling results requires strong
scene and lighting assumptions, as well as computationally complex
algorithms, particularly to solve hard non-linear inverse rendering
optimizations.

Several reconstruction approaches use prior models on reflectance
to alleviate some of these problems; e.g., [Haber et al. 2009]. An
alternative strategy is photometric stereo, which uses images of a
scene captured under different controlled illumination [Mulligan
and Brolly 2004; Hernandez et al. 2008; Ghosh et al. 2011; De-
bevec 2012; Nehab et al. 2005]. However, these approaches depend
on complex controlled lighting setups, which are not available for
scanning in general environments. Other methods create super-
resolution texture maps from multi-view RGB images that were
aligned on coarse image-based 3D models [Goldluecke et al. 2014];
however, they do not refine reconstructed geometry. Since they
jointly consider cues from multiple aligned RGB images, many of



these image-based approaches produce results of higher detail than
current RGB-D camera methods, but computation times are very
long even on moderate shape resolutions.

Some methods thus combine image-based stereo and RGB-D depth
for reconstruction [Nair et al. 2013], but comparably high geometric
detail to that obtained by shading-based refinement is usually not
attained. Zhou et al. [2014] combine Kinect Fusion with a texture
warping and frame bundling approach. This yields ghost-free tex-
tures warped to a coarse SDF model, which means that the textured
model is not geometrically accurate. Recently, shape-from-shading
under general illumination was used to up-sample and refine a single
RGB-D depth image [Han et al. 2013; Yu et al. 2013] at offline rates,
and Wu et al. [2014] refine a single RGB-D camera depth frame at
video rate. However, single frame RGB-D methods are specialized
to the image domain and cannot process a 3D reconstruction. Un-
fortunately, simply integrating their results in a Kinect Fusion style,
causes a notable loss of the refined detail.

Current work on intrinsic image and video decomposition [Chen and
Koltun 2013; Lee et al. 2012] deals with the problem of separating
albedo and shading. These methods employ sophisticated albedo
regularization strategies, but are computationally more expensive
and do not easily extend to the volume.

3 Overview

In this section, we provide a brief overview of our method. We
first capture input color and depth using commodity sensors (e.g.,
Microsoft Kinect). This yields a sequence of depth images D;
and color images C;, which we use to generate an implicit surface
representing the scanned scene (Section 4.3). We follow Curless
and Levoy [1996], and use a truncated signed distance function to
represent the implicit surface. From D; and C;, we obtain an initial
truncated signed distance field D, from which we then solve for the
refined signed distance field D. To this end, we augment each voxel
v with the shading attributes — i.e., albedo a(v) and refined distance

ﬁ(v) — needed for our geometric refinement. In addition, we build
a hierarchy of sparse voxel grids with varying voxel sizes to account
for the differing depth and color input resolutions. This enables
our shading-based refinement to run efficiently in a coarse-to-fine
fashion. Note that to obtain sharp color data in the fused model, we
optimize for the rigid camera poses 7; bringing each frame ¢ back
to the space of the first frame (Section 4.4).

‘We then run our shading-based refinement on the sparse voxel hi-
erarchy (Section 5). To accommodate general and uncontrolled
lighting environments, we continually estimate incident irradiance.
We rephrase the inverse shading problem for an implicit TSDF sur-
face, simultaneously optimizing for refined surface geometry and
dense, spatially-varying albedo. These dense albedos, as opposed
to coarsely aligned clusters of albedos as in many previous shading-
based refinement methods (e.g., [Wu et al. 2011; Wu et al. 2013]),
further inform the lighting estimation and enable more accurate
shape refinement results. We optimize our new objective function
with a custom GPU-based parallel Gauss-Newton optimizer which
allows to solve for tens of millions of variables within a few seconds.
This yields the refined scene model D with fine-scale detail from
the RGB data mapped to the shape model. Fig. 2 shows an overview
of our reconstruction pipeline.

4 Implicit Surface Generation

We follow Curless and Levoy [1996], and represent surface geom-
etry of a scanned scene using a truncated signed distance function
(TSDF), denoted as D. The TSDF is defined as a piecewise linear

function, where supporting data is stored in a regular grid, composed
of a set of voxels {v; ; x}. Every voxel is a sampled point of D,
containing a (signed) distance data point D(v). Accessing the vol-
umetric distance field D for non-discrete points p € R is done
through tri-linear interpolation. Typically, we are interested in points
p on the iso-surface of D, where D(p) = 0, which we will denote
as Do. Defining geometry as an implicit signed distance function
has many advantages. A TSDF enables the regularization and noise-
aware integration of noisy input depth data (e.g., obtained from
commodity RGB-D sensors), and is a versatile representation that
has been used in many scanning pipelines and surface reconstruction
approaches. Additionally, it is easy to convert to other shape repre-
sentations. Similar to Kinect Fusion [Newcombe et al. 2011; Izadi
et al. 2011], we incrementally align and integrate RGB-D images to
get an initial coarse signed distance field D (Section 4.3) which is
subsequently geometrically refined (Section 5).

4.1 Extended Sparse Voxel Data Structure

Our ultimate goal is to obtain a refined distance field D by utilizing
color data and shape-from-shading under general lighting conditions.
We thus require a sufficiently high voxel resolution to capture all
geometric detail from RGB images. To this end, we aim to set the
voxel resolution such that the 2D projections of voxels are smaller
than the pixel size of input color images; as shown by our results,
this is typically well below 1 mm? (cf. Section 7). For efficient
surface reconstruction and refinement at this extremely high spatial
resolution, we store and process all data structures on the GPU.

In addition to the signed distance value, each voxel stores values of
additional attributes for color C(v) and integration weight W (v),
both of which are explained in Section 4.3. In contrast to previous
work, our voxels also need to store additional attributes for shape
refinement (see Section 5); i.e., a luminance albedo a(v) and a

refined signed distance value ﬁ(v) Our per-voxel data structure
is depicted in Listing 1. Note that the requirement to store both
D and D is due to the stabilization term in our objective function
(cf. Section 5.2).

The above considerations show that we reconstruct at a very high spa-
tial resolution, matching high-end offline scanning systems [Levoy
et al. 2000], even while book-keeping more data per voxel. Since we
do not want to sacrifice computational efficiency, we exploit the ca-
pabilities of modern GPUs. To store and process this high-resolution
data on the GPU, we store voxels sparsely using an extension of
the voxel hashing scheme of NieBner et al. [2013]. The core idea
is to use a spatial hashing function to reference a relatively small
number of voxel blocks close to 3D locations where the actual iso-
surface resides; in our implementation, we use 42 voxel blocks.
Note that a sparse representation is key to efficient storage and fast
shading-based refinement.

Instead of a single, high-resolution voxel grid, as in [NieBner et al.
2013], we maintain a hierarchy of sparse grids with varying voxel
sizes to facilitate the later shading-based refinement. Since color
resolution is typically much higher than the corresponding input
depth, we set the voxel resolution on the coarsest level to correspond
to the input depth resolution, and the voxel size at the finest level
to correspond to the input RGB data. This enables an efficient
coarse-to-fine optimization, ultimately allowing us to obtain the
refined signed distance function D at the highest resolution (see
Section 5.2). Note that our hierarchical TSDF model stores both
the initial integration result D and the final refined result D. Before
minimizing the shading-based refinement objective (see Section 5.2),
we initialize D with D.
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Figure 2: Our reconstruction pipeline. With a set of RGB-D images as input, we first run bundle adjustment to align the RGB-D frames (if
necessary). Based on this, an initial volumetric signed distance field of the surface is computed by depth fusion. Afterwards, hierarchical
shading-based refinement based on RGB input is used to add fine scale detail to the reconstruction.

4.2 Allocation

Allocation of the sparse voxel hierarchy begins on the coarsest level.
New voxel blocks are allocated based upon input depth, and then
depth and color data are fused into the coarsest signed distance field
as described in Section 4.3; i.e., D, C, and W are computed. We
then optimize for refined distances D and reflectance values a for
the coarsest level (Section 5).

struct Voxel {

//! integrated values

float signedDistance; // D(v)
uchar3 colorRGB; // C(v)
uchar weight; // W(v)
//! unknowns of our objective
float luminanceAlbedo // a(v)
float refinedDistance // D' (v)

// chromaticity and intensity are

// computed from C(v) on-the-fly
bi
Listing 1: Voxel data structure: the set of voxels defines D, C, and
W. We solve for albedos a and the refined distance field D in the
refinement step (see Section 5.2).

For each level ¢ of the hierarchy beyond the coarsest level, we
then repeat the following process in a coarse-to-fine manner. Voxel
blocks are allocated on level ¢ based upon the refined depth of the
previous level g + 1; that is, for each voxel block of level ¢ + 1, if
the minimum \f)| in the sub-block corresponding to a voxel block
on level ¢ is less than tiunc, then the block is allocated. Depth and
color data are then integrated to provide each voxel v with its signed
distance value D(v) and color value C(v). The refined distance
value D(v) as well as the reflectance value a(v) of hierarchy level ¢
are initialized by tri-linear interpolation of the refined values of level
g+ 1, and then we optimize for D and a of level q. Pseudo-code for
allocation and optimization on the sparse voxel hierarchy is given in
Figure 3.

4.3 Integration of Depth Images

Similar to Kinect Fusion [Newcombe et al. 2011; Izadi et al. 2011],
we incrementally compute the fused implicit signed distance field D
by integrating depth data from the individual depth images D;. In
addition, we integrate color data from input RGB images C; to obtain
the volumetric color function C in the same manner. A rigid camera
pose 7; for frame i, bringing D; and C; to the first frame camera

space, is computed in a pose optimization step (see Section 4.4).
In this section, we assume that the alignment of an input sequence
with n frames is given by a set of rigid transformation matrices

T=AT1,...., T}

For a given voxel v in the fused scene model D, the corresponding
signed distance value D(v) can be computed as a weighted average
with respect to n input frames of a given scanning sequence

i1 wi(v)d;
D(v) = 21_1"‘;‘)’((‘:’)) (V)7

W) = > wi(v),

where d;(v) is the projective distance (along the z axis) between a
voxel and the i-th depth frame D; and w; (v) is the integration weight
for a sample of an input frame. For a given rigid transformation
T: between the current frame ¢ and the first frame (cf. Section 4.4),
depth camera projection matrix 74, and a maximum truncation Zunc,
we define d;(v) as

di(v) sgn(d;)(v) - min(]

di(v) =

Z(V) |7 ttrunc), where
1
2

(T V)= = Di(ma(T; V)=

While most real-time systems (e.g., [Newcombe et al. 2011; Izadi
etal. 2011]) use a uniform weighting (w;(v) = 1, Vi, v), we define
our weighting function w based on the distance to the surface as well
as the angle «; (v) between the viewing direction and the surface
normal [Curless and Levoy 1996; Bylow et al. 2013] in the depth
image at the projected voxel location:

w; (V) = tangle - P(i(V)) + taise - p(|ds(V)]),

> coarse-to-fine optimization

procedure OPTIMIZE(int numLevels)
> coarsest level follows [NieBner et al. 2013]
ALLOCATECOARSEST(numLevels-1)
INTEGRATECOARSEST(numLevels-1)

for ¢ = numLevels — 2to 0 do
ALLOCCOARSETOFINE(q, q+1)
INTEGRATEDEPTHANDCOLOR(q)
SAMPLECOARSETOFINE(q, g+1)
REFINE(q)
end for
end procedure

Figure 3: Pseudo-code for coarse-to-fine optimization on the sparse
voxel grid hierarchy.



where tangle and tais are user-defined constants, and ¢(z) is a robust
kernel with a user-defined constant ¢, (2 ~ 5 in our experiments)

¢(x) = 1/(1 + twn - )°.

The first term of w gives scene regions that are seen most head-on a
higher priority. This reflects the lower measurement uncertainty of
most depth cameras for such regions. The second term gives values
of voxels that are further from the surface a lower weight during
integration. We integrate color data analogously to depth: for all
RGB input frames C;, we use the weighted average as shown above.
Note that we keep the same weighting w; (v, since color integration
benefits from this weighting strategy similar to depth data. Later,
per-voxel color values are used as shading constraints to determine
the refined distance field D (see Section 5.2).

4.4 Pose Optimization

As we are fusing data from many input frames into a compact
surface representation, we must avoid drift while integrating the
surface to guarantee sharp color data. This problem is stronger on
larger scenes where the camera moves further. For such scenes,
on the coarsest hierarchy level only, and before the coarse-to-fine
refinement commences, we therefore perform a two-step global pose
optimization in addition to the integration steps from Section 4.3.
This step jointly solves for all camera poses 7 = {71, ..., Tn }, wWith
T; as the rigid transform from the i-th frame to the first frame.

Sparse Bundle Adjustment Step First, we perform a sparse bun-
dle adjustment step, similar to traditional bundle adjustment of RGB
images [Triggs et al. 2000; Snavely et al. 2006; Agarwal et al. 2011];
however, we formulate our pose optimization to take advantage of
the depth channel as well. The camera poses are initialized with
frame-to-frame ICP on the depth data. Features are then detected
in the color input using a SIFT keypoint detector [Lowe 2004], and
for each pair of images which overlap (using the initial trajectory),
feature correspondences are found based upon their SIFT descriptor
distance. Using the depth data, we can project each feature to a 3D
location p in the camera space of that frame. We then solve for the
camera poses by minimizing the following alignment error:

#frames #corresp.

Esparse(T) = Z Z
1,7 k

N

’ ﬁpik - 'E'ij )

where p;i is the 3D location of the k-th feature correspondence
shared by frame ¢ and frame j. This is a non-linear least-squares
objective, which we minimize using the Levenberg-Marquardt al-
gorithm. However, since the feature correspondences are fixed, the
optimization results can only be as good as the feature correspon-
dences, which may not be all perfect. As a mismatch of a few pixels
may still lead to blurred color fusion, a dense bundle adjustment step
is performed afterwards.

Dense Bundle Adjustment Step In the dense bundle adjustment
step, instead of finding features and correspondences, we use the
pixel information of D; and C; densely, and optimize for maximal
photo-consistency and minimal re-projection error. Here, Z; is the
luminance image corresponding to C;. We minimize the objective

Edense(T) - wcolorEcolor(T) + wgeometricEgeometric(T),

where Weolor and Weeomewic Weight the photo-consistency term and
the geometric error term, respectively.

The photo-consistency term, similar to [Zhou and Koltun 2014], is
defined as follows:

F#frames #pixels 5

Bua(T) = > > |Time(pa)) = Time(T; Tipar)||.
ij k

2

Here, 7. (m4) is the perspective transform of the color (depth) cam-
era. That is, for each pixel &k in each frame ¢ with associated camera
space position p;x and color intensity Z; (7. (pix)), the projection of
Pix into every other color image should produce a similar intensity.
The geometric error term, a point-plane energy, is defined as:

Egeometric(T) =
F#frames #pixels

S 3 [nh- (ow - T Tomst (B (T Tpw))]
i 2

That is, for each pixel k in frame ¢ with associated camera space
position p;x and corresponding surface normal n;, the projection
of p; into every other depth image should produce a 3D position
which (when projected into the camera space of frame ¢) agrees with
Pik-

Note that for both terms we also discard invalid correspondences —
e.g., if there is no associated depth value for a pixel or if ¢ (pix) is
out of image bounds — and only project a pixel from frame ¢ to frame
74 if the frames overlap (as computed by 7). We also subsample the
depth and color images by a factor of 8 on pixel level for efficiency
purposes. We minimize the non-linear least-squares objective Egense
using Gauss-Newton optimization, iteratively giving more weight to
Ecolor. T is initialized with the results from the sparse bundling step.

5 Refinement of Signed Distance Functions

Our main goal is to refine D at the current hierarchy level, which
lacks fine-scale detail, to reflect the fine-scale RGB detail in the
geometry, and store this in D. Previous shading-based refinement
methods use mesh models which cause additional book keeping
overhead on the GPU, and require more effort to ensure spatially
regular sampling. In contrast, our volumetric data structure provides
a uniform sampling of the underlying surface.

Prior to optimization, we initialize D with D. As the surface is
defined by the iso-surface Dg, we aim to determine the refined ge-
ometry Do. To this end, we constrain points on Dy by an inverse
rendering and shading assumption on the observed color data C.
This constraint relies on an efficient formulation of light transport
to model the illumination in an environment and the reflection on
the surface. Similar to previous approaches, we assume surfaces
to be predominantly Lambertian, allowing us to estimate incident
irradiance at a point p as a function of the (locally) parametrized
surface normal n. In the following, we explain how incident illumi-
nation in the scene can be directly computed from D and the fused
aligned color images (Section 5.1). The estimated illumination is
used in a combined non-linear optimization for refined geometry
and dense spatially-varying albedo (Section 5.2). An overview of
the shading-based refinement stage is shown in Fig. 4.

Lighting Model For Lambertian reflectance, the incident irradi-
ance at a point p is known to be smooth, and can be efficiently
represented using spherical harmonics [Ramamoorthi and Hanrahan
2001]. Typically, a good approximation is given by the first nine
spherical harmonics basis functions; i.e., up to 2nd order. Similar to
previous methods (e.g., [Wu et al. 2011; Wu et al. 2014]), we esti-
mate the lighting based on a luminance attribute I(v) for each voxel,
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Figure 4: At each hierarchy level, lighting is estimated based on
the fused model and the spatially-varying albedo estimates. Then,
albedos and geometry of voxels within a thin-shell are optimized.

which we compute on-the-fly from C(v). The reflected irradiance
B at a voxel v on (or close to) Dy is given as

b2
B(v)=a(v) Y lnHn(n(v)).

This is a parameterization of the reflectance equation, where a(v)
is the albedo at v, H,, are the spherical harmonics (SH) basis func-
tions, and1 = (I1, ..., l2) are the corresponding spherical harmonics
coefficients of the environment map; i.e., the incident illumination
represented in the SH basis. We do not infer more than b = 3
(i-e., up to 2nd order) spherical harmonics bands from images of
Lambertian surfaces [Hasinoff et al. 2011]. For efficiency reasons,
we also do not consider visibility at each voxel. In order to refine
a surface based on the shading constraint, we need to solve for the
per-voxel albedo a, per-scene lighting 1, and most importantly, the
per-voxel normal n, which is directly coupled to the underlying
signed distance function (see next paragraph).

The spherical harmonics basis functions H,, are parametrized by a
unit normal n, and are defined as

Ho = 1.0,H1 = ny,Hz = nz,Hg = nz,H4 = nznw
Hs =nyn., He = —ngne — nyny + 2n.n.,

Hr =nzng, Hg = ngnge — nyny.

Normal Field On a signed distance field, surface normals n € R?
are given by the gradient operator. In our case, we express the

normals by the gradient of the refined signed distance function D,
which for a continuous 3D location p = (z, y, 2) is defined as:

f)(.l‘ + 57yaz) - f)(x,y,z)

VD(JC»Z/’ Z) = }II‘% S ]?(ZIJ,y + 57 Z) - ]?(m,y,z)
- D(CC,y7Z+5) _D(x7y>z)

The surface normal n(p) = (ns, ny, n.) is then given by

n(p) = VD(p)/|[VD(p)|--

In the case of a discrete voxel v = (i, j, k), we obtain the corre-
sponding surface normal n(z, 7, k) through Vf)(i7 J, k) with o = 1,
i.e., a numerical forward difference between adjacent voxels. Note
again that we initialize D with D, and as the optimization com-
mences, n changes along with the underlying D.

5.1 Lighting Estimation with Signed Distance Fields

We estimate the illumination coefficients 1 by minimizing the differ-
ences between the computed shading B on the iso-surface Do and

iso-surface

Figure 5: Refinement overview: input model (left) and output (right).
Memory for voxels is only allocated within the truncation region.
Refinement is performed in the thin-shell region.

the luminance data I, which is computed from the captured color

data C:
Eiign (1) = Z (B(v) —I(v))%.

veDg

In practice, we consider voxels located inside a thin shell region
tahent — i.€., where [D| < tgen — as one sample point (cf. Fig. 5). In
our experiments, we set tsneir to twice of the size of a voxel. The mini-
mization of Eligy (1) is performed using the current albedo and geom-
etry estimate. In our case, Enght(l) is a linear least-squares problem
whose solution is equivalent to the following over-constrained linear
system, where {vo, ..., vi } is the set of voxels with |D| < tgen:

Hi(n(vo)) Hy2 (n(vo)) Iy I(vo)/a(vo)

Hi(n(v1)) Hamv) | (] [1)/am)

Hi(n(vi) Hy(n(vi))/ \lye 1(vi)/a(vy)
A 1 b

Note that the dimensionality of A is [{vo, ..., vk}| x b?, where
k >> b?. To obtain the least-squares solution, we use the normal
equation ATA -1 = ATb. Instead of storing A or b explicitly,
we directly compute A" A and A”'b using a parallel reduction on
the GPU. As a result, we obtain (ATA) -1 = (ATb), a b* x b*
linear system, which is solved using a singular value decomposition.
As AT A and ATb are low-dimensional, the SVD solve (not the
reduction, which runs on the GPU) is sufficiently fast on the CPU.

We assume distant illumination, which makes the lighting coeffi-
cients 1 spatially invariant; however, they are computed under the
consideration of local albedo and surface variation. Before we start
optimizing for D and a (see Section 6) on the coarsest level, we
assume an initially uniform albedo to compute 1. Since we update
the lighting with each hierarchy level (see Section 3), we use the
optimized albedo distribution from the previous level for subsequent
lighting estimations.

Unlike single image-based methods (e.g., [Wu et al. 2014]) which
yield inconsistent lighting estimates for different views, our estima-
tion of lighting on a volume provides a consistent and much more
robust solution. Using the information of all fused color images in
tandem also efficiently regularizes out noise prior to energy min-
imization. Directly considering all images simultaneously would
make the optimization more complex. In contrast, we can exploit
our efficient SDF representation for gaining higher efficiency.

5.2 Geometry Refinement and Albedo Estimation on
Signed Distance Fields

The core innovation in our method is the shape-from-shading-based
refinement of D to obtain D. The goal is to refine D such that the



computed appearance B of the refined surface matches the high-
resolution image data, under the estimated lighting 1. This involves
solving a non-linear optimization problem to minimize a similarity
measure. The problem is further compounded by the fact that albe-
dos a(v) are needed to predict the appearance, but are also unknown.
Previous shading-based refinement methods often approached this
chicken-and-egg problem by assuming constant albedo, or by clus-
tering a fixed set of discrete albedos before optimizing geometry.
A better, yet more complex strategy, is to simultaneously optimize
for unknown albedos and refined geometry. In order to solve this
ill-conditioned inverse rendering problem, prior assumptions about
materials are usually made, such as a discrete set of albedos [Wu
et al. 2011], or a data-driven BRDF prior [Haber et al. 2009].

Our method solves for refined geometry D and unknown albedos
a in a combined global optimization problem. However, we for-
mulate this optimization in a fundamentally different manner from
many previous shading-based refinement approaches that solve for
surface displacements along normals of a mesh, or orientations of
points or patches. Instead, we directly solve for distance values in
a volumetric signed distance field such that the shading constraints
are fulfilled. This implicit formulation enables fast hierarchical
processing, efficient regularization, and avoids commitment to an
explicit surface model with costly topology handling. It also differs
by simultaneously solving for dense spatially-varying albedos under
the control of a robust chromaticity-based regularizer.

The unknowns are optimized by solving the following non-linear
least squares problem:

Ereﬁne(ﬁy a) -
Z weEg(v) + wr Er (V) + we Eg (V) + wa Ea(v),

v st [D(v)| <tghen

where F, is a shading gradient constraint, E, is a volumetric regu-
larizer, F; is a surface stabilization constraint, and F, is a constraint
on albedos. wg, Wy, W, W, are corresponding optimization weights.
We solve for the unknowns of the voxels in a thin shell band of width
tshent around the surface, where |D| < tshen, as depicted in Fig. 5.

Gradient-based Shading Constraint Our data term is based on
the assumption that high-frequency shape detail leads to shading
variations visible in the RGB images. For simplicity, we only con-
sider grayscale input I (computed from C), which should agree with
the computed shading intensity B. At a voxel v, I/, thus penalizes
differences between gradients of captured grayscale input and the
predicted intensity of our lighting model

Ey(v) = ||VB(v) = VI(v)|;.

Note that the gradient difference metric is more robust than direct
appearance difference against inaccuracies of our hypothesized shad-
ing model.

In order to evaluate E,, we directly couple the gradients with the
data of the relevant voxels. That is, VB is directly linked to the
normals n and albedos a. As n is not explicitly stored, our data term
E, directly constrains the underlying distance values. Note that
the normals are defined with respect to the refined signed distance

function D.

As we optimize at discrete voxel locations (¢, 7, k), we approximate
the gradients of the computed shading and observed image intensity
using finite forward differences, similar to the computation of n.

Volumetric Regularizer As shading-based refinement is gener-
ally an ill-posed problem and sensitive to noisy input, we need to

Figure 6: From left to right: fused model color, chromaticity, and
estimated per voxel albedo luminance estimate a(v).

regularize the refined signed distance function. To this end, we
enforce a smoothness constraint at every voxel v, which is defined
as

E.(v)= (Af)(v))2.

In practice, we discretize the volumetric Laplacian operator, consid-
ering direct voxel neighbors with uniform weighting.

Surface Stabilization We also define a surface stabilization con-
straint, penalizing the deviation of D from the original unrefined
input distances D:

Ei(v) = (D(v) = D(v))*.

This constraint is particularly important in the context of noisy input
data, and mitigates the problem of getting stuck in local minima.

Albedo Regularizer The super-linear convergence of our Gauss-
Newton solver (Section 6) enables efficient simultaneous optimiza-
tion for both albedo and geometry. However, this may also introduce
instabilities, as the decision of whether to change material or surface
geometry is non-trivial. To reduce these ambiguities, we regularize
albedo variations by introducing a consistency constraint based on
chromaticity I'; see Fig 6. In spirit, this is similar to the regular-
ization employed by Chen and Koltun [2013] to tackle the intrinsic
image problem. The albedo regularizer at a voxel v considers its
1-ring neighborhood N, and is defined as

Eo(v)= Y ¢(T(v) ~T(u)) - (a(v) —a(u))’,

ueNy,

where the chromaticity I'(v) is directly computed from C(v) as
I'(v) = C(v) /I(v), and ¢(z) is the robust kernel introduced in
Section 4.3. This regularization can be seen as a Laplacian smooth-
ness constraint with anisotropic weights based on local chromaticity
variations. This idea follows the assumption that surfaces with a
similar chromaticity share a similar albedo. While this assumption
does not hold everywhere in a scene, our experiments show that it is
a good compromise between generality and resolving ambiguity.

6 Parallel Energy Optimization

Our objective Frfine(D, a) has a total of 2N unknowns, where N
is the number of voxels (one unknown for D and one for a per
voxel) inside of the thin shell region |]3| < tshen. In our example
scenes, IV lies in the tens of millions of unknowns, leading to a high-
dimensional non-linear optimization problem. In order to minimize
the objective efficiently, we introduce a specifically tailored GPU-
based Gauss-Newton solver that exploits the sparse structure of our
data representation. Note that we assume the lighting is known
here, as it is estimated at each hierarchy level before minimizing
Ereﬁne (D7 a) .

As our energy Erene(D, a) : R?Y s Ris a sum of squares, we



reformulate E'refine as a non-linear least-squares problem:
M
Efeﬁne(Dv a) = Z fk (D7 a)2'
k=1

Then the number M of residual terms fx is M = 11N. The number
of residuals is composed of the following terms: E, evaluates a
difference of gradients — 3N terms; . is the Laplacian operator
evaluated as a set of scalar values — N terms; Es is a difference of
scalar values — N terms; E, is a sum iterating over the six direct
neighbors of a voxel — 6N terms.

6.1 Parallel Gauss-Newton Optimization

For simplicity, we define the unknowns of Frefine as x = {D, a}.
Minimizing Erefine (X) is a non-linear least-squares problem, which
is reformulated in terms of its residual vector F : R?Y — R™ This
leads to the traditional Gauss-Newton definition

F(X) = [fl (X)7 ceey ffw(x)]T'

The optimal parameters x* are obtained by solving the minimization
problem

Ereﬁne(x) - ||F(X) H37

x* = argmin ||F(x)|)3.
X

To this end, we linearize the vector field F(x) around xj, using a
first-order Taylor expansion to obtain an approximation of F(xx1):

F(Xk+1) %F(X}c) +J(Xk)6k, Ok = Xk41 — Xk,
where J(xy,) is the Jacobian matrix of F evaluated at xj. This ap-
proximation transforms the original non-linear optimization problem
into a linear minimization problem:

Sy = ar%min [|F(xx) + J(xk)5k||2.
k

This is a highly over-constrained linear system for which we obtain
the optimal least-squares solution §;, by solving the corresponding
normal equations:

J(xi) "I (x)05 = =T (xx) " F(xs).

To solve the original non-linear minimization problem, we thus need
to solve a sequence of linearized problems; i.e., we initialize xo with
the scanned input D and uniform albedo, and successively compute
the update J;;, from xj, t0 Xj41.

In order to solve for the linear update §;;, we jointly optimize for all
unknowns using a preconditioned conjugate gradient (PCG) solver.
Similar to previous methods [Weber et al. 2013; Zollhofer et al.
2014; Wu et al. 2014], we run the linear PCG steps using a set of
CUDA kernels on the GPU.

6.1.1 Block-based PCG Solver

Note that we optimize on the sparse voxel hashing data structure
(Section 4.1). Since our data structure is sparse and we want to refine
around the iso-surface, we refine a voxel block if and only if it con-
tains at least one voxel within the thin shell region (|D (V)| < tsnenr)-
To identify these blocks, we run a compactification on the spatial
hashing data structure. The resulting linear index set is used for
thread allocation. Note that the thin shell region is defined with re-
spect to the refined surface, and is thus moving with the refined Din
every Gauss-Newton step. In order to efficiently map the linear solve
to the GPU, we have to exploit shared memory, which is an order
of magnitude faster than global memory. To this end, we divide the

entire voxel grid domain into a set of 4% voxel blocks, and use a vari-
ant of the Schwarz Alternating Procedure. Each voxel block and its
corresponding 2-ring voxel boundary are loaded into shared memory
and processed by a 64-thread CUDA block (i.e., (2 +4 + 2)% = 83
voxels loaded per block). Note that the 2-ring voxel boundary is re-
quired due to the gradient and volumetric regularization constraints,
E, and E,; the albedo constraint involves only a 1-ring neighbor-
hood. We decide once per 5 x 5 voxel neighborhood if it can be
optimized; i.e., we check if all voxels are allocated, have non-zero
weight W(v) > 0, and provide a valid normal ||n(v)||2 # 0.
We treat the sub-domains (i.e., voxel blocks) as independent linear
systems by imposing Neumann constraints at the boundaries. The
sub-problems are solved using a data-parallel Preconditioned Conju-
gate Gradient (PCG) solver. After a sub-problem has been solved,
we directly apply the obtained updates to the corresponding variables
in global memory. Note that this leads to a mixture of additive- and
multiplicative-Schwarz, since results of already finished blocks may
be read by other blocks within the same Gauss-Newton step. We
apply a virtual sub-block shift when loading data to shared memory.
This shift is based on multiple Halton sequences with respect to the
biases 2, 3, 5 in the x-,y-, and z-directions, respectively. This moves
the block boundaries around in space, allowing data to propagate
faster, and thus improving convergence. In our examples, we run 10
local PCG iterations before we propagate updates to global memory.
‘We monitor convergence of the Gauss-Newton solver by evaluating
the non-linear residual error after each iteration step. If the change
in residual error is smaller than a threshold, convergence is assumed.

6.1.2 Coarse-to-fine Optimization

The presented non-linear optimization strategy works well for es-
timating geometric detail at the given voxel resolution, since in-
formation can be easily propagated in a local neighborhood. Due
to the sparse structure of the optimization problem and the used
iterative optimization strategy, the information propagation distance
is directly dependent on the number of iteration steps performed.
Therefore, a high number of iterations would be required to prop-
agate the voxel attributes over large spatial distances. To alleviate
this problem, we use a coarse-to-fine nested optimization strategy
(see Fig. 3) that leverages our sparse hierarchical voxel hashing
data structure, thus effectively reducing the number of iterations
and improving convergence. The objective is first minimized on the
coarsest level; upon convergence, the optimized parameters D, a
are prolongated to the next finer level, where they serve as an initial
estimate. We traverse the complete hierarchy in a coarse-to-fine
fashion, from centimeter to sub-millimeter voxel resolution.

7 Results

We tested our volumetric shading-based refinement method on differ-
ent reconstruction settings, primarily for RGB-D scanning but also
with purely image-based reconstruction. In both cases, the cameras
were moved by hand. In the case of RGB-D scanning, we capture 5
scenes using a PrimeSense Carmine 1.09 (Short Range) sensor. We
use two modes of the sensor: 1) 640 x 480 depth and 640 x 480
RGB at 30 fps, and 2) 640 x 480 depth and 1280 x 1024 RGB
at &~ 12 fps. Note that this sensor uses a structured light pattern,
only obtaining independent depth values at visible projected IR dot
locations. Thus, the effective depth resolution is much lower than
the depth stream resolution. Mode 1 is used for all sequences, except
for the Augustus and the Relief. We used the weights w, = 0.2,
wyr = 20 — 160, ws = 10 — 120, w, = 0.1 for our test. Here,
a — b means an increase of the weight from a to b during optimiza-
tion. For objects with uniform albedo —i.e., the Augustus data set —,
we use w, = o0 to keep the albedo constant.
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Figure 7: Refinement results of our method using data obtained from multi-view stereo. In order to obtain the initial TSDF reconstruction, we
input 1139 x 1709 pixel RGB images to a multi-view stereo reconstruction method [AgiSoft 2014].
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Figure 8: Comparison between our approach and previous work [Wu et al. 2011] on synthetically-generated data, where the surface albedo is
set to a uniform value.
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Figure 9: Convergence analysis of our energy minimization using our Gauss-Newton solver for different scenes, where PS denotes the
PrimeSense sensor, and MVS, multi-view stereo. We iterate over 3 hierarchy levels and run 9 Gauss-Newton steps at each level. Within a
Gauss-Newton iteration, 10 PCG iterations minimize the linear system.



First, we fuse noisy input depth data in order to obtain an initial shape
represented as a TSDF. While fusion regularizes out noise, it also
leads to severe over-smoothing, resulting in reconstructions which
lack high-frequency geometric detail. We then run our new shading-
based refinement approach directly on the implicit function to obtain
the refined surface geometry along with a spatially-varying albedo
estimate for each voxel. Fig. 1 and Fig. 12 show reconstruction
results obtained with a PrimeSense Carmine 1.09 (Short Range)
sensor before and after our refinement step. While real-time frame-
to-frame tracking suffices for small scenes (i.e., the Augustus (PS)
and Sokrates (PS)), we need to perform an offline pose optimization
step (see Sec. 4.4) for larger scans. All scenes were captured under
different uncontrolled lighting conditions. The number of variables
that need to be optimized during refinement, and the typical amount
of iterations used in the refinement optimization are listed in Table
1. Effectively, that means we show results with a 0.5mm voxel
resolution on the finest level for the fountain scene, and all other
scenes have a 1mm resolution. Note however, that the continuous
signed distance field D provides a higher surface resolution than
the underlying voxel grid. We compare a refined reconstruction
with a ground truth laser scan in Fig 14. As we can see in the
final reconstructions, we are able to capture a significant amount of
surface detail absent from the unrefined result. For instance, note the
fine strands in the hair of the Augustus bust, or the fine details and
writing in the Relief. For both weakly and strongly textured objects,
our reconstructions are of high accuracy.

In addition to RGB-D scanning, we also show the versatility of our
method by using it in a purely image-based reconstruction context.
We capture 4 scenes using a multi-view stereo setup, where we
reconstruct an initial shape model using a state-of-the-art stereo
reconstruction method [AgiSoft 2014]. For each result, 30 images
are captured with a handheld commodity Canon EOS 1100D camera
and downsampled to 1139 x 1709 pixels. From the multi-view stereo
reconstruction, we obtain a initial TSDF and then run our volumetric
shading-based refinement to obtain fine-scale geometric detail. Fig. 7
shows the reconstruction results before and after our refinement step.
Note that we are able to show significant improvements, even on
these high-quality multi-view stereo reconstructions.

Our method is very stable for different parameter settings; no scene-
specific tweaking is needed. There are a few controllable parameters,
such as the number of hierarchy levels, or the number of iterations
of the optimizer. These parameters are determined by the difference
in input depth and color resolutions; e.g., low-resolution depth and
high-resolution color will require more hierarchy levels. Results are
also stable on a range of the weights of Ficfine; We use a coherent set
for all our results. For input depth with strong noise (this is currently
the norm for commodity RGB-D data), better results are obtained
when using a higher weight for the volumetric regularizer E,.

7.1 Evaluation

We quantitatively evaluate the accuracy of our method on
synthetically-generated depth and color data (see Fig. 8). The data
is generated by rendering a mesh from 28 virtual view points with a
given camera trajectory. Through ray casting, we obtain a quantized
depth map from the ground truth model, and add Gaussian noise
to mimic a real depth sensor’s characteristics. For color data gen-
eration, we set the surface reflectance to a uniform value and use
the same spherical harmonics lighting model as in the method of
[Ramamoorthi and Hanrahan 2001]. We run our algorithm on these
simulated depth and RGB images, first obtaining an initial model
by fusing the depth and then applying our shading-based refinement
technique. The length of the bounding box diagonal of the mesh
corresponds to 30cm, and the root-mean-square error is 0.47mm.
The error plot on the surface is shown in Fig. 8.

Figure 10: Comparison between our algorithm and Wu et al. [2011]
on a multi-view stereo sequence.

Wu et al. 11 Ours (albedo)

Figure 11: Comparison between our approach and Wu et al. [2011]
on synthetic data with varying surface albedo.

In addition, we quantitatively compare our method with previous
work, a shading-based refinement method which operates on meshes
(MESHRef) [Wu et al. 2011]. As MESHRef requires an input mesh
instead of a TSDF, we extract the initial mesh from the implicit
function. In comparison to our method, MESHRef only obtained
a reconstruction accuracy with root-mean-square error of 0.86mm.
Our approach not only improves upon quality, but moreover, sig-
nificantly improves computational efficiency. While our method
requires less than 7.8 seconds, MESHRef takes 20 minutes to ob-
tain the refined result. This speedup is largely due to the fact that
minimization of an objective function on a mesh data structure is
fundamentally harder than using our hierarchical and sparse grid
structure. In Fig. 11, we provide another comparison on the same
dataset, except that we now consider spatially-varying albedo from
a painted texture. If we disable albedo optimization — i.e., assume a
fixed uniform albedo —, we would misinterpret material transitions
as shading cues and hallucinate wrong surface detail; previous work
reduce such artifacts by assuming a set of clusters of albedos [Wu
et al. 2011], but these artifacts are still very notable. Jointly opti-
mizing for both geometric detail and albedo variation with our new
chromaticity-based albedo regulizer further mitigates these artifacts
and provides a much more realistic solution. We also compare our
method with MESHRef on real-world data in Fig. 10. Our approach
not only has a runtime advantage (6.5 seconds against about 1 hour),
but also produces higher quality results. Fig. 13 shows a comparison
to the method of [Wu et al. 2014] including a final fusion step. This
final fusion smoothes out some of the previously reconstructed de-
tail. In contrast, our approach works in the reverse order and obtains
higher quality results (voxel resolution of 0.5mm in both cases). The
cumulative runtime on the complete sequence is a few seconds for
our approach as well as the method of [Wu et al. 2014].

7.2 Runtime and Convergence

We analyze the effectiveness of our method in Fig. 9, which shows
convergence plots for optimizing our objective function. In this eval-
uation, we use 3 hierarchy levels and run 9 Gauss-Newton steps on



Seq. Level 3 Level 2 Level 1 Level 0 Total
Fuse | Opt [ #Vars || Fuse | Opt | #Vars || Fuse | Opt | #Vars || Fuse | Opt | #Vars || #lter | Time

Sokrates (PS) 0.5s | 85ms | 200k 1.3s | 0.1s | 520k 1.6s | 0.5s | 2.0M 19s | 39s | 16M 10 9.9s
Relief (PS) 0.9s 0.6s 1.2M 1.3s | 0.7s | 2.5M 1.0s | l4s | 4.0M 128 | 2.6s | 12M 11 9.7s
Augustus (PS) 0.4s 0.1s 200k 1.8s | 0.2s | 1.5M 2.1s | 1.2s | 8.5M 24s | 49s | 26M 12 13.1s
Fountain (PS) 0.1s 0.1s 500k 02s | 0.8s | 2.5M 0.3s 1.1s | 6.0M 0.5s | 2.7s 19M 10 5.8s
Figure (MVS) 0.4s 0.8s 600k 14s | 1.0s | 2.7M 2.1s | 2.1s | 1IM 19s | 2.3s | 16M 10 12s

Table 1: Timing measurements for different test scenes, where PS denotes the PrimeSense sensor, and MVS, multi-view stereo.
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Figure 12: Refinement results for different scenes captured with a PrimeSense Carmine 1.09 (Short Range) sensor.
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Figure 13: The method of Wu et al. [2014] refines independent depth maps, causing detail to smooth out in the subsequent fusion process; i.e.,
fuse after refine. Our method refines the geometry after surface fusion, i.e., refine after fuse, thus capturing substantially more detail.
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Figure 14: Comparison with a laser scan: laser scan (left), error of
our refined reconstruction (right) based on PrimeSense data.
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Figure 15: Limitation of the albedo regularization strategy: spa-
tially close albedo variations in monochromatic material lead to
hallucinated geometry in the final reconstruction.

each level of the hierarchy; within every non-linear Gauss-Newton
iteration, we run 10 PCG steps. As our method enjoys super-linear
convergence from jointly solving for all unknowns of our objective,
the optimizer converges on every hierarchy level after only few iter-
ations. At runtime, we detect convergence by monitoring the change
in residual error after each Gauss-Newton iteration, thus allowing
for an early out and keeping computational costs low.

The resulting timings are summarized in Table 1, measured on an In-
tel Core i7-3770 CPU with 3.4 GHz (16 GB Ram) and Nvidia
Geforce GTX Titan GPU. The timings are generated using the
following parameters: 4 hierarchy levels, a maximum of 9 outer
Gauss-Newton iterations (early-out enabled), and 10 PCG iterations
(coarse-to-fine). We measure timings for fusing input data (Fusion)
and optimizing the TSDF (Opt) at each of the 4 hierarchy levels. In
addition, we state the number of variables involved per level (#Vars),
and provide the total number of Gauss-Newton steps over the com-
plete hierarchy (#Iter). We also give the total compute time (Time).
As shown, we are able to refine an implicit function with 26M free
variables in only a few seconds. The highest resolution we used
during our tests was 115M variables based on a 5 level hierarchy,
which took about 25 seconds to compute (Fountain). Note, that this
includes fusion and refinement of the complete input data.

8 Limitations

While we are able to generate compelling reconstruction results,
our method still suffers from several limitations. Similar to previ-
ous shape-from-shading methods, our lighting model is an approx-
imation to reality, as we employ spherical harmonics, assuming
a distant, monochromatic light source. Second, we assume Lam-
bertian surfaces, and cannot handle specularities, self-occlusions,
spatially-varying illumination, or high-frequency textures. While
our simple lighting model permits the reconstruction of a subset
of materials, we hope that our volumetric formulation will support
more complex models in the future. An equally hard problem is
distinguishing between albedo and shading variation, particularly for
high-frequency material. Our joint optimization for geometry and
albedo is a first step towards such disambiguation, for materials with

significant changes in chromaticity. However, for monochromatic
material, our method might erroneously hallucinate geometric detail
if the surface albedo changes abruptly (see Fig. 15). This error is a
result of misinterpreting local albedo changes as variation in surface
shading. A crucial requirement for shading-based refinement is the
precise alignment of RGB-D input frames. Unfortunately, for larger
scans, this requires several minutes in our current unoptimized im-
plementation, limiting our method to run offline. If we were able to
obtain accurate poses in real-time, our method would be well-suited
to run in the background of a real-time scanning framework.

9 Conclusion

We have presented a new method for shading-based refinement
directly on truncated signed distance fields to mitigate one of their
significant disadvantages; i.e., over-smoothing. We leverage RGB
data captured in general uncontrolled environments to refine the
implicit surface by exploiting the shading cues. Our hierarchical and
sparse TSDF representation easily allows for high spatial resolution,
and facilitates efficient optimization, resulting in compute times over
an order of magnitude faster than previous methods, while attaining
more precision. While TSDFs are commonly used in real-time
reconstruction methods, we still require an offline pose optimization
step for larger scenes. However, we believe that future research along
the lines of real-time bundle adjustment will close this gap. With this
in mind, we hope that achieving highly-detailed reconstructions in
real-time using consumer setups will become possible in the future.

A List of Mathematical Symbols

‘ Symbol | Description
v position of voxel in R?
o) continuous point in R?
n surface normal in R®
D(v) signed distance value at v
C(v) color value (RGB) at v
W(v) integration weight at v
a(v) albedo at v (unknown variable)
D(v) refined TSDF (unknown variable)
w;(v) integration weight of frame 4
di(v) projective distance to voxel center in frame %
Do iso-surface of the TSDF
Te projection of the color camera
Td projection of the depth camera
I(v) intensity at v
T'(v) chromaticity at v
n number of input frames
D; depth image of frame ¢
Cs color image of frame %
Z; intensity of C;
Ti transformation from frame 7 to the base frame
q hierarchy level
Hy, m-th spherical harmonics basis
1 vector of all lighting coefficients [,
B(v) reflected irradiance at v
N number of voxels inside the thin shell region
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