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Figure 1: We present an image synthesis approach that learns object-specific neural textures which can be interpreted by a
neural renderer. Our approach can be trained end-to-end with real data, allowing us to re-synthesize novel views of static
objects, edit scenes, as well as re-render dynamic animated surfaces.

ABSTRACT
The modern computer graphics pipeline can synthesize images at
remarkable visual quality; however, it requires well-defined, high-
quality 3D content as input. In this work, we explore the use of
imperfect 3D content, for instance, obtained from photo-metric
reconstructions with noisy and incomplete surface geometry, while
still aiming to produce photo-realistic (re-)renderings. To address
this challenging problem, we introduce Deferred Neural Render-
ing, a new paradigm for image synthesis that combines the tradi-
tional graphics pipeline with learnable components. Specifically,
we propose Neural Textures, which are learned feature maps that
are trained as part of the scene capture process. Similar to tradi-
tional textures, neural textures are stored as maps on top of 3D
mesh proxies; however, the high-dimensional feature maps contain
significantly more information, which can be interpreted by our
new deferred neural rendering pipeline. Both neural textures and
deferred neural renderer are trained end-to-end, enabling us to syn-
thesize photo-realistic images even when the original 3D content
was imperfect. In contrast to traditional, black-box 2D generative
neural networks, our 3D representation gives us explicit control
over the generated output, and allows for a wide range of applica-
tion domains. For instance, we can synthesize temporally-consistent
video re-renderings of recorded 3D scenes as our representation is
inherently embedded in 3D space. This way, neural textures can
be utilized to coherently re-render or manipulate existing video
content in both static and dynamic environments at real-time rates.
We show the effectiveness of our approach in several experiments
on novel view synthesis, scene editing, and facial reenactment,
and compare to state-of-the-art approaches that leverage the stan-
dard graphics pipeline as well as conventional generative neural
networks.
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1 INTRODUCTION
The current computer graphics pipeline has evolved during the
last decades, and is now able to achieve remarkable rendering re-
sults. From a fixed function pipeline around the rasterization unit,
the graphics pipeline has turned into a programmable rendering
pipeline. Based on this pipeline the Siggraph community has estab-
lished rendering techniques that now achieve nearly photo-realistic
imagery. While the visuals are stunning, a major drawback of these
classical approaches is the need of well-defined input data, includ-
ing a precise definition of the surface geometry, the underlying
material properties, and the scene illumination. In movie or video
game productions, this underlying 3D content is manually-created
by skilled artists in countless working hours. An alternative is to ob-
tain 3D content from real-world scenes by using 3D reconstruction
techniques. However, given the inherent limitations of state-of-the-
art 3D reconstruction approaches, such as noisy, oversmoothed
geometry or occlusions, the obtained 3D content is imperfect. From
this captured content, it is nearly impossible to re-synthesize photo-
realistic images with the existing computer graphics pipeline and
rendering techniques.

In this work, we assume that captured 3D content will always
suffer from reconstruction artifacts in one way or another. Rather
than aiming to fix the artifacts in the 3D content, we propose to
change the paradigm of the rendering pipeline to cope with these
imperfections. To this end, we introduce Deferred Neural Rendering
which makes a step towards a learnable rendering pipeline, combin-
ing learned Neural Textures with the traditional graphics pipeline.



Neural textures, similar to classical textures, are stored in 2D maps
on top of a 3D mesh, and may be transformed along with the under-
lying 3D geometry. However, the core idea behind neural textures
is that they are composed of a set of optimal feature maps, rather
than simple RGB values, that are learned during the scene capture
process. The rich signal stored in these high-dimensional neural
textures encodes a high-level description of the surface appearance,
and can be interpreted by our new deferred neural renderer. Both
the neural textures and the deferred neural renderer are trained in
an end-to-end fashion, which enables us to achieve photo-realistic
(re-)rendering results, even from imperfect geometry.

This learnable rendering pipeline enables a wide range of practi-
cal new application scenarios. Our main motivation is to produce
photo-realistic images from imperfect 3D reconstructions, for in-
stance, obtained from a video sequence using multi-view stereo
where the geometry typically is noisy, oversmoothed from strong
regularization, or has holes. Here, we show that we can synthesize
novel view points of a scene while the geometry acts as a 3D proxy
that forces generated images to be temporally-coherent with respect
to the new camera view points. However, the ability to explicitly
control the 3D geometry not only allows synthesizing static view
points, but also editing the underlying 3D content. For instance, we
can duplicate scene objects, along with their neural textures, and
then coherently manipulate the re-renderings of the captured 3D
environment. We show several examples of such editing operations,
e.g., copy or remove, in static 3D environments, which would have
not been feasible with existing capture or editing techniques. In
addition, we demonstrate that we can edit dynamic scenes in a
similar fashion. Specifically, we show examples on human faces,
where we first reconstruct the 3D face as well as the neural textures,
and then modify the 3D facial animation and re-render a photo-
realistic output. This way, our unified neural rendering approach
can easily achieve results that outperform the quality of existing
facial re-enactment pipelines [Thies et al. 2016].

In comparison to existing black-box, generative neural networks
that are defined by a series of 2D convolutions, our approach is
inherently embedded in 3D space. As such, we implicitly obtain
generated video output that is temporally coherent due to the un-
derlying 3D embedding. In addition, we have active control in
manipulations, rather than making modifications to a semantically-
uncorrelated random vector defining the latent space, as in 2D GAN
approaches [Goodfellow et al. 2014].

In summary, we combine the benefits of traditional graphics-
based image synthesis with learnable components from themachine
learning community. This results in a novel paradigm of a learnable
computer graphics pipeline with the following contributions:

• Neural Rendering for photo-realistic image synthesis based
on imperfect commodity 3D reconstructions at real-time
rates,

• Neural Textures for novel view synthesis in static scenes and
for editing dynamic objects,

• which is achieved by an end-to-end learned novel deferred
neural rendering pipeline that combines insights from tradi-
tional graphics with learnable components.

2 RELATEDWORK
Deferred Neural Rendering presents a new paradigm of image syn-
thesis with learned neural textures and renderer. Such learned com-
puter graphics components can be useful for a variety of problems
in computer graphics and computer vision. In this work, we focus
on novel view synthesis and synthesis of novel scene edits and
animations, such as the animation of reconstructed human faces.

2.1 Novel-view Synthesis from RGB-D Scans
A traditional building block of novel-view synthesis approaches
is to first obtain a digital representation of a real world scene. In
particular in the context of 3D reconstruction with commodity RGB-
D sensors, researchers have made significant progress, enabling
robust tracking [Choi et al. 2015; Dai et al. 2017; Izadi et al. 2011;
Newcombe et al. 2011; Whelan et al. 2016] and large-scale 3D scene
capture [Chen et al. 2013; Nießner et al. 2013; Zeng et al. 2013]. Im-
ages from novel view points can be synthesized by rendering these
reconstructions. Given the inherent limitations in current state-
of-the-art 3D reconstruction approaches, the obtained 3D content
is imperfect, for instance, reconstructed geometry is noisy and/or
oversmoothed, or has holes due to occlusion; this makes it nearly
impossible to re-synthesize photo-realistic images. A large body
of work is also focused on the digitization of surface appearance;
here, vertex colors can be estimated from the observations based on
weighted averaging, but tracking drift and insufficient geometric
resolution leads to blur. Textures are an alternative that tackles the
problem of missing spatial resolution; here, the geometry and color
resolutions are decoupled, however, one must find a consistent uv-
mapping. One approach to compensate for camera drift and slightly
wrong geometry is based on finding non-rigid warps [Huang et al.
2017; Zhou and Koltun 2014]. A major benefit of this line of work
is that the reconstructed 3D content can be visualized by standard
rendering techniques, and the approach directly generalizes to 4D
capture as long as non-rigid surfaces can be reliably tracked [Dou
et al. 2016; Innmann et al. 2016; Newcombe et al. 2015]. However, at
the same time, imperfections in the reconstructions directly trans-
late to visual artifacts in the re-rendering, which currently is the
major hurdle towards making content creation from real-world
scenes accessible.

2.2 Image-based Rendering
An alternative direction is to only utilize a very coarse geometry
proxy and fill in the missing content based on high-resolution 2D
textures [Huang et al. 2017]. Image-based rendering (IBR) pushes
this to the limit, where the 3D geometry proxy is only used to select
suitable views for cross-projection and view-dependent blending
[Buehler et al. 2001; Carranza et al. 2003; Hedman et al. 2016; Heigl
et al. 1999; Zheng et al. 2009]. The advantage is that the visual qual-
ity of the re-rendered images does not exhibit the common artifacts
caused by a low-resolution geometric representation. However,
many IBR approaches suffer from ghosting artifacts and problems
at the occlusion boundaries. These artifacts can be reduced using
optical flow alignment [Casas et al. 2015; Du et al. 2018; Eisemann
et al. 2008] or by different view-specific proxies [Chaurasia et al.
2013]. An alternative is to directly model uncertainty [Penner and
Zhang 2017]. Our approach also changes the standard rendering
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Figure 2: Overview of our neural rendering pipeline: Given an object with a valid uv-map parameterization and an associated
Neural Texture map as input, the standard graphics pipeline is used to render a view-dependent screen-space featuremap. The
screen space feature map is then converted to photo-realistic imagery based on a Deferred Neural Renderer. Our approach is
trained end-to-end to find the best renderer and texture map for a given task.

pipeline to address the shortcomings of imperfect 3D surface ge-
ometry for rendering photo-realistic imagery. However, in contrast
to these approaches, Deferred Neural Rendering is more flexible,
since we learn so-called neural textures that efficiently encode the
appearance of an object in a normalized texture space.

2.3 Light-field Rendering
There exists a wide range of light-field rendering ap-
proaches [Gortler et al. 1996; Levoy and Hanrahan 1996;
Magnor and Girod 1999]. In particular, our approach is closely
related to the work on surface light fields. Surface light fields store
the direction-dependent radiance of every point on the surface,
can be used for novel view synthesis, and are able to handle scenes
with complex non-Lambertian surface properties. Similar to our
approach, a proxy geometry is required. Lumitexels/Lumispheres
are used to store the direction-dependent radiance samples at each
surface point. To store and query these lumitexels several different
methods have been proposed [Chen et al. 2002; Miandji et al. 2013;
Wood et al. 2000]. Our neural textures can be seen as a learned
analog to these lumitexels, but instead of hand-crafted features,
we employ end-to-end learning to find optimal features that can
be interpreted by a neural network such that the original images
are best reproduced. Recently, Chen et al. presented Deep Surface
Light Fields [Chen et al. 2018], which reduces the required number
of surface light field samples required for view interpolation using
a neural network. The used encoder-decoder network structure
that estimates per-vertex colors is specially designed for the
surface light field use case and learns to fill missing sample data
across vertices. Instead of predicting per vertex colors, we propose
an end-to-end trained feature representation of scene appearance
based on neural textures and a deferred neural renderer. The
deferred neural renderer is a convolutional network that takes the
neighborhood of the rasterized surface points into account and,
thus, is able to correct for reconstruction errors of the underlying
geometry. In contrast, the Deep Surface Light Fields approach
needs high quality reconstructions, since a ‘slight misalignment
can lead to strong artifacts such as ghosting and blurring’ [Chen
et al. 2018]. In our results section, we demonstrate how our
approach can handle a decreasing level of geometry quality and
show a comparison to a per-pixel fully connected network.

2.4 Image Synthesis using Neural Networks
With the recent success of deep learning, neural networks can
now also be utilized to synthesize artificial 2D imagery. In partic-
ular, generative adversarial networks (GANs) [Goodfellow et al.
2014] and auto-regressive networks [Oord et al. 2016] achieve very
impressive results in synthesizing individual images. Pure synthe-
sis approaches can be extended to a conditional setting, which
is normally tackled with generator networks that follow a classi-
cal encoder-decoder architecture [Hinton and Salakhutdinov 2006;
Kingma and Welling 2013]. Conditional synthesis can be used to
bridge the gap between two different domains, i.e., renderings of
incomplete computer vision reconstructions and photo-realistic
imagery. Nowadays, conditional GANs (cGANs) are the de facto
standard for conditional image synthesis [Isola et al. 2017; Mirza
and Osindero 2014; Radford et al. 2016]. Recent approaches use
generator networks based on a U-Net [Ronneberger et al. 2015]
architecture, a convolutional encoder-decoder architecture with
skip connections. In both settings, high-resolution [Karras et al.
2018; Wang et al. 2018b] synthesis has been demonstrated. While
such generative approaches have shown impressive results for the
synthesis of single, isolated images, synthesizing 3D and temporally-
consistent imagery is an open problem. One step in this direction is
the vid2vid [Wang et al. 2018a] approach that employs a recurrent
network for short-term temporal coherence. Unfortunately, the pro-
duced results are not 3D consistent and lack photo-realism as well
as long-term coherence. The lack of 3D consistency is an artifact of
trying to learn complex 3D relationships with a purely 2D image-
to-image translation pipeline, i.e., in view-dependent screen space.
Rather than relying on a black-box neural network with a series of
2D convolutions, we propose neural textures, which combine the
knowledge of 3D transformations and perspective effects from the
computer graphics pipeline with learnable rendering. To this end,
we efficiently encode the appearance of an object in normalized
texture space of a 3D model, learned in an end-to-end fashion, and
are hence able to combine the benefits from both graphics and
machine learning.

2.5 View Synthesis using Neural Networks
Neural networks can also be directly applied to the task of view
synthesis. Novel views can be generated based on a large corpus of
posed training images [Flynn et al. 2016], synthesized by learned
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Figure 3: Overview of our reenactment synthesis pipeline.
Using expression transfer, we generate an altered uv map of
the target actor matching the expression of the source actor.
Thisuv map is used to sample from the neural texture of the
target actor. In addition we provide a background image to
the neural renderer, to output the final reenactment result.

warping [Park et al. 2017; Zhou et al. 2016], or a layered scene
representation [Tulsiani et al. 2018; Zhou et al. 2018]. Disentangled
representations with respect to rotation or other semantic param-
eters can be learned using deep convolutional inverse graphics
networks [Kulkarni et al. 2015]. Images can be synthesized based
on low-dimensional feature vectors [Eslami et al. 2018; Yan et al.
2016] that obey geometric constraints [Cohen and Welling 2014;
Worrall et al. 2017]. For example, latent variables based on Lie
groups can be used to better deal with object rotation [Falorsi et al.
2018]. Recent learning-based IBR-approaches learn the blend func-
tion using a deep network [Hedman et al. 2018], employ separate
networks for color and disparity estimation [Kalantari et al. 2016],
explicitly learn view-dependent lighting and shading effects [Thies
et al. 2018], or integrate features into a persistent Cartesian 3D
grid [Sitzmann et al. 2019]. While these approaches enforce geo-
metric constraints, they yet have to demonstrate photo-realistic
image-synthesis and do not directly generalize to dynamic scenes.
Our approach combines 3D knowledge in the form of neural tex-
tures with learnable rendering and gives us explicit control over
the generated output allowing for a wide range of applications.

3 OVERVIEW
The motivation for our work is to enable photo-realistic image
synthesis based on imperfect commodity 3D reconstructions. At
the core of our approach are our Neural Textures that are learned
jointly with a Deferred Neural Renderer. Neural Textures are a new
graphics primitive that can have arbitrary dimension and store a
high-dimensional learned feature vector per texel. Using the stan-
dard graphics pipeline, neural textures are sampled, resulting in
a feature map in the target image space (see Fig. 2). Based on a
trained Deferred Neural Renderer, the sampled image space feature
map is then interpreted. The renderer outputs the final image that
photo-realistically re-synthesizes the original object.

Neural Textures are the basis for a wide variety of applications
ranging from novel-view synthesis to video editing. Here, we con-
centrate on the use cases that are most relevant to computer graph-
ics: 1) Neural Textures can be used to texture a given mesh and,

thus, can be easily integrated into the standard graphics pipeline.
In particular, for 3D scanned objects (e.g., via KinectFusion [Izadi
et al. 2011; Newcombe et al. 2011] or multi-view stereo reconstruc-
tions [Schönberger and Frahm 2016]), where additional ground
truth color images are available, they enable learning photo-realistic
synthesis of imagery from novel view points (see Fig. 3). 2) Neural
Textures can also be used to edit dynamic scenes in a similar fashion.
Specifically, we show reenactment examples for human faces (e.g.,
Face2Face [Thies et al. 2016]), where we first reconstruct the 3D
face as well as a neural texture, and then modify and realistically
re-render the 3D facial animation.

In the following, we detail the stages of our deferred neural
rendering pipeline, see Sec. 4. Next, we show different use cases,
including comparisons to approaches based on standard computer
graphics algorithms, see Sec. 5. Finally, we want to inspire the
reader to further investigate the benefits of neural textures, see
Sec. 6.

4 DEFERRED NEURAL RENDERING
Deferred Neural Rendering combines principles from the traditional
graphics pipeline with learnable components. The classical render-
ing pipeline consists of several stages that can potentially be made
learnable. In this work, we are focusing on Neural Textures and
Deferred Neural Rendering, see Fig. 2, which enable us to realize
a variety of applications. Lets consider the task of realistically re-
rendering an object based on a noisy commodity 3D reconstruction.
Given a 3D reconstructed object with a validuv-texture parameteri-
zation, an associated Neural Texturemap, and a target view as input,
the standard graphics pipeline is used to render a view-dependent
screen-space feature map. This feature map is then converted to
photo-realistic imagery based on a Deferred Neural Renderer. Our
approach can be trained end-to-end to find the best renderer R
and texture map T based on a training corpus of N posed images
{Ik , pk }Nk=1. Here, Ik is the k-th image of the training corpus and pk
are the corresponding camera parameters (intrinsic and extrinsic).
We phrase finding the best neural texture T∗ and the best deferred
neural renderer R∗ for a specific task as a joint optimization prob-
lem over the complete training corpus:

T∗,R∗ = argmin
T,R

N∑
k=1

L(Ik , pk |T,R) . (1)

Here, L is a suitable training loss, i.e., a photometric re-rendering
loss. In the following, we describe all components in more detail.

4.1 Neural Textures
Texture maps are one of the key building blocks of modern com-
puter graphics. Typically, they contain appearance information,
such as the albedo of an object, but they can also store custom
attributes, such as high-frequency geometric detail in the form of
normal or displacement maps. These textures can be thought of
as low-dimensional hand-crafted feature maps that are later on
interpreted by programmed shader programs. With this analogy
in mind, Neural Textures are an extension of traditional texture
maps; instead of storing low-dimensional hand-crafted features,
they store learned high-dimensional feature maps capable of stor-
ing significantly more information and can be interpreted by our
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new deferred neural rendering pipeline. Instead of rebuilding the
appearance of a specific object using hand-crafted features, we learn
them based on a ground truth training corpus of images. Both the
neural textures and the deferred neural renderer are trained end-to-
end, enabling photo-realistic image synthesis even if the original
3D content was imperfect. In our experiments, we use 16 feature
channels. It is possible to employ an intermediate re-rendering loss
to enforce that the first 3 feature channels represent the average
color of the object, i.e., mimic a classical color texture map.

4.2 Neural Texture Hierarchies
Choosing the right texture resolution for a given scene and view-
point is a challenging problem. In particular, for complex scenes
with high depth complexity there might not exist a single optimal
choice. Given a fixed texture resolution, if parts of the scene are
far away from the viewer, the texture will be under-sampled, i.e.,
texture minification. In contrast, if parts of the scene are close to
the virtual camera, the texture is over-sampled, i.e., texture magni-
fication. Both minification and magnification might appear at the
same time for different parts of the scene. In classical computer
graphics, Mipmaps are used to tackle this challenge. Inspired by
classical Mipmaps, we propose to employNeural Texture Hierarchies
with K levels. We access the texture hierarchy by sampling values
from all K levels using normalized texture coordinates and bi-linear
sampling. The final color estimate is then obtained by adding all
per-level sampling results (Laplacian Pyramid). During training,
our goal is to learn the best Neural Texture Hierarchy that stores low
frequency information on the coarse levels, while high frequency
detail is represented on the finer levels. We enforce this split during
training based on a soft-constraint, i.e., we apply no regularization
to the coarse levels and an increasing amount of ℓ2 regularization to
the features channels of the finer levels. Neural Texture Hierarchies
enable us to obtain higher quality results than with Neural Textures
alone; for an evaluation, see Fig. 8. The improved quality is due to
the fact that if only one high resolution neural texture would be
used, which solves the minification problem, we run into overfitting
problems during training due to texture magnification. Overfitting
the training data is problematic, since it leads to sampling issues
during test time where unoptimized pixel values might be sampled.
Even though we do not explicitly specify a Mipmap interpolation
scheme, we want to highlight that the network as well as the texture
is trained end-to-end; thus, the 2D renderer has to learn a proper
mapping of the Laplacian Pyramid along the entire training-set,
including the compensation of aliasing effects in image space.

4.3 Differentiable Sampling of Neural Textures
One key property of traditional texture maps is that they can
be sampled at arbitrary floating point image locations. To this
end, the returned color value is computed based on an interpo-
lation scheme. Our Neural Textures, similar to the standard graphics
pipeline, support bi-linear interpolation for sampling the stored
high-dimensional feature maps in a differentiable manner. This en-
ables end-to-end training of our Neural Textures together with the
Deferred Neural Renderer. With the support for bi-linear sampling,
we can use the standard graphics pipeline to rasterize the coarse
proxy geometry and sample the neural texture. This results in a

Figure 4: Comparison to the image-to-image translation ap-
proach Pix2Pix [Isola et al. 2016]. As can be seen, the novel
views synthesized by our approach are higher quality, e.g.,
less blurry. Our results are close to the ground truth.

view-dependent screen space feature map. Note, during training we
emulate the graphics pipeline, such that the forward and backward
pass will exactly match the operations at test time.

4.4 Deferred Neural Renderer
The task of the Deferred Neural Renderer is to form a photo-realistic
image given a screen space feature map; this can be thought of as an
analogy to classical deferred rendering. We obtain the screen space
feature map by rendering the coarse geometric object proxy, which
is textured with the neural texture, from the ground truth view-
point using the traditional rasterization pipeline. Before training
commences, we precompute the required texel-to-pixel mapping
for each of the training images (referred to as uv map in this paper).
At test time, the rasterizer of the graphics pipeline can be employed.
Based on this precomputed mapping, differentiable sampling can
be used to obtain the screen space feature map via a lookup. Our
Deferred Neural Renderer is based on recent advances in learning
image-to-image mappings based on convolutional encoder-decoder
network with skip-connection, similar to U-Net [Ronneberger et al.
2015] (see Appendix A). Our network can have additional inputs
such as a view-direction. For view-dependent effects, we explicitly
input the view-direction using the first 3 bands of spherical har-
monics resulting in 9 feature maps. Prior to the actual network,
we multiply the sampled features with the evaluated spherical har-
monic basis functions (feature channels 4 − 13). This allows us
to rotate features with respect to the view-direction. In Fig. 13,
we show the advantage of using such a spherical harmonics layer.
We train our neural texture representation end-to-end with the
rendering network.

4.5 Training
We train our neural rendering approach end-to-end using stochastic
gradient descent. Since training images are static, we are able to
precompute texture look-up maps which we will refer to as uv-maps
in the following. We build training pairs consisting of an uv-map
and the corresponding ground truth color image.
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In all experiments, we employ an ℓ1 photometric reproduction
loss with respect to the ground truth imagery. The ℓ1 loss is defined
on a random crops (position and scale of the crops varies) of the full
frame image. Random cropping and scaling acts as a data augmenta-
tion strategy and leads to significantly better generalization to new
views at test time. We employ the Adam optimizer [Kingma and
Ba 2014] built into PyTorch [Paszke et al. 2017] for training. The
Deferred Neural Renderer and the Neural Textures are jointly trained
using a learning rate of 0.001 and default parameters β1 = 0.9,
β2 = 0.999, ϵ = 1 · e−8 for Adam. We run approximately 50k steps
of stochastic gradient descent.

4.6 Training Data
Our rendering pipeline is trained based on a video sequence that is
also used to reconstruct the object. The synthetic sequences consist
of 1000 random training views and a smooth trajectory of 1000
different test views on the hemisphere. The synthetic objects are
provided by Artec3D1. The average angular difference between
the novel view direction and their nearest neighbor in the training
set is 2.13◦ (with a minimum of 0.04◦ and a maximum of 6.60◦).
In our ablation study w.r.t. the number of training images (see
Fig. 9), the angular difference increases with a decreasing number
of images: 500 images results in an average of 3.30◦ (0.11◦ min /
9.76◦ max), 250 images in 4.4◦ (0.11◦/12.67◦) and 125 images in
6.27◦ (0.23◦/18.79◦). For real sequences, the training corpus size
varies between 800 and 1700 frames depending on the sequence
and the target application with similar angular differences from
the test set to the training set (e.g., Sequence 10 with 800 training
images and a mean angular difference of 0.92◦ (0.04◦/3.48◦), and
Sequence 6 containing 1700 training images with a mean angular
difference of 0.85◦ (0.02◦/2.3◦)). Note that the angular differences
in the viewing directions do not consider the positional changes in
the cameras used for novel view synthesis.

For facial reenactment, a variety of facial expressions in the
training video is necessary, otherwise it looses expressiveness. In
our experiments, we used 650 training images for Macron, 2400 for
Obama, and 2400 for Sequence 17.

5 RESULTS
The experiments on 2D neural textures are based on RGB input
data. We first reconstruct the geometry of the target object and
estimate a texture parametrization. The training data is created
by re-rendering the uv-maps of the mesh that correspond to the
observed images. Using this training data, we optimize for the
neural texture of the object, allowing us to re-render the object
under novel views (see Sec. 5.1) or animate the object (see Sec. 5.2).
We used neural textures with a resolution of 512 × 512 with 4
hierarchy level, containing 16 features per texel and a U-Net with 5
layers as a neural renderer.

The quality of our image synthesis approach can best be judged
from the results shown in the supplemental video.

5.1 Novel View Point Synthesis
For the novel view point synthesis of static objects, we require a
3D reconstruction and camera poses. The training video sequence
1https://www.artec3d.com/3d-models

Figure 5: Comparison to the novel view point synthesis ap-
proach IGNOR [Thies et al. 2018]. Our approach better re-
produces high frequency specular highlights.

has been captured at a resolution of 1920 × 1080 pixels at 30Hz
using a DSLR camera. We obtain a coarse geometric proxy and
the camera parameters (intrinsic and extrinsic) using the COLMAP
[Schönberger and Frahm 2016; Schönberger et al. 2016] structure-
from-motion approach. To handle video sequences, which results
in several hundred input images, we only use a subset of frames
(every 25th frame) for the dense reconstruction. The other frames
are registered to this reconstruction. The uv-parameterization is
computed based on the Microsoft uv-atlas generator 2.

The learnable rendering pipeline allows us to re-render objects
in a photo-realistic fashion. We only consider one object during
training time, which allows us to optimize for the object-specific
texture and appearance. Object-specific learning for novel view
synthesis is known from recent publications [Sitzmann et al. 2019;
Thies et al. 2018]. Fig. 4 shows a novel view synthesis generated
by our approach in comparison to an image-to-image translation
network (Pix2Pix [Isola et al. 2016]) that directly predicts the out-
put image based on the input uv-map. Our approach outperforms
Pix2Pix in terms of image quality with much sharper results. Our re-
sults are also more temporally coherent (c.f. supplemental video). In
Fig. 5 we compare our approach to the image-guided neural object
rendering approach (IGNOR) of Thies et al. [2018]. In contrast to
this image-guided rendering approach, our technique demonstrates
a temporally more stable re-rendering of objects. Our approach
also does not need to store multiple of the original images for re-
rendering, instead we store a single neural texture that enables us
to synthesize the object under new views.

In Fig. 6, we also show comparisons to classical IBR methods.
As baseline we implemented the IBR method of Debevec et al. [De-
bevec et al. 1998]. This approach directly reprojects the appearance
of the captured views into the target view. The original technique
uses a per-triangle nearest neighbor view selection to reproject the
appearance into the target view, instead, we do this view selection
on a per-pixel basis, resulting in higher quality. The nearest neigh-
bors are selected among the entire training set (i.e., 1686 views).
This per-pixel selection is far from real-time, but ensures optimal
per-pixel results. Note, that this IBR method heavily relies on the
reconstructed geometry. The MSE is 37.58 compared to 20.65 for
our method. Especially, on occlusion boundaries the classical IBR
method shows artifacts (see supplemental video). The authors of
Hedman et al. [Hedman et al. 2016] ran a comparison on the same

2https://github.com/Microsoft/UVAtlas
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Figure 6: Comparison to Debevec et al. [Debevec et al. 1998]
(based on 1686 views) andHedman et al. [Hedman et al. 2016]
(based on the 99 views used for 3D reconstruction, since
this approach requires the stereo reconstructed depth of the
frames).

sequence. Besides the reconstructed model, they also use the re-
constructed per frame depth. Thus, their approach is limited to
the frames used for the multi-view stereo reconstruction (in this
sequence every 25th frame, resulting in a set of 99 frames). Their
approach is able to generate high quality results with an MSE of
28.05; improving the handling of occlusion boundaries in compari-
son to Debevec et al.. In comparison to both image-based rendering
approaches, our technique does not require access to the training
data during test time. Only the texture (512 × 512 × 16) and the ren-
dering network (16million parameters) has to be provided which is
magnitudes lower than storing hundreds of high resolution images.
In case of InsideOut [Hedman et al. 2016], also the depth of each
frame has to be stored. Note that our approach needs to be trained
on a specific sequence which is a drawback in comparison to the
IBR methods. Training takes a similar amount of time as the stereo
reconstruction and ensures high-quality synthesis of novel views.

Fig. 7 and Fig. 8 show a study on the influence of the resolution
of the employed neural texture. As can be seen, the best results
for a single texture without hierarchy are obtained for a resolution
of 256 × 256 achieving an MSE of 0.418. This sweet spot is due to
tradeoffs in texture minification andmagnification. The hierarchical
neural texture is able to further improve quality while increasing
texture resolution, i.e., an MSE of 0.38 at a resolution of 2048×2048.
Our approach is able to synthesize novel views based on a relatively
small training set, but the quality of view-dependent effects, such as
specular highlights, is slowly degrading with a decreasing number
of training images (see Fig. 9).

In Fig.10 we show an ablation study on the influence of the
proxy geometry. We gradually reduce the geometry resolution
using quadric edge collapse. As can be seen, our approach is also
able to reproduce a reasonable output image given a very coarse
mesh.

Figure 7: Influence of the neural texture resolution on the
re-rendering quality. The graph is showing the MSE of the
image synthesis vs. the ground truth test data with respect
to the neural texture resolution. In this experiment, a single
texture without hierarchy has its sweet spot at a resolution
of 256 × 256 achieving an MSE of 0.418 with an increasing
error for higher resolutions (at a resolution of 4096 × 4096 it
reaches an MSE of 8.46). In contrast, the hierarchical texture
performs better on higher resolutions, i.e., an MSE of 0.38 at
a resolution of 2048 × 2048. The MSE is computed on color
values in the range of [0, 255] using a test sequence of 1000
frames, based on a synthetic rendering of a vase with Phong
shading (see Fig. 8).

Figure 8: Influence of the neural texture resolution on re-
rendering. Sample images of re-renderings using single neu-
ral textures. In addition to the re-renderings, we also show
the first three channels of the sampled neural texture which
are regularized to be the mean color.

To analyze the effect of the U-Net-like renderer, we also trained
a per-pixel fully connected network that outputs the final image
(see Fig.11). Thus, this network does not leverage neighborhood
information and is solely based on the per-pixel sampled texture
values. We use the same structure as our rendering network and
replace all convolutions by 1 × 1 convolutions with stride 1. The
idea of taking a per-pixel network is similar to the approach of
Chen et al. [Chen et al. 2018] which estimates view-dependent per-
vertex colors using a fully-connected network. Since we are using
a hand-held video sequence to reconstruct the object, the geometry
contains errors. As shown in our experiment, the neighborhood in-
formation is crucial to correct for these geometry errors. In contrast,
a per-pixel network leads to more blurry outputs (see supplemental
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Figure 9: The number of images used for training influences
the reconstruction ability. In particular, view-dependent ef-
fects such as specular highlights slowly degrade. Given the
object above we achieve anMSE of 2.2 for 1000, 2.2 for 500, 6.5
for 250 and anMSE of 16.9 for only 125 images in the training
set (assuming color values in the range of [0, 255] ).

Figure 10: Ablation study w.r.t. the resolution of the under-
lying geometry proxy. Using quadric edge collapse we grad-
ually reduce the number of triangles of the geometry from
8000 to 500. Evenwith the lowest resolution, a photo-realistic
image can be generated. The MSE measured on the test se-
quence increases from 11.068 (8K), 11.742 (4K), 12.515 (2K),
18.297 (1K) to 18.395 for a proxymeshwith 500 triangles (MSE
w.r.t. color channels in [0, 255]).

video). This observation is also mentioned in the paper of Chen et
al. [Chen et al. 2018] and, thus, they have to take special care to
reconstruct high quality geometry as input.

Similar to other learning-based approaches, view extrapolation
results in artifacts (see Fig.12). As can be seen, our approach is still
able to synthesize reasonable views of the object in the areas that
where captured in the training video.

Scene Editing. Using our rendering technique based on neural
textures, we are able to apply edits to a scene (see Fig. 14). Given a
reconstruction of the scene, we can move objects around, remove,

Figure 11: Here, we show a comparison of a U-Net renderer
vs. a per-pixel fully connected render network. Since the U-
Net renderer uses neighborhood information, it is able to
correct the reconstruction errors of the underlying geome-
try. We also show the rendering based on a classical average
texture.

Figure 12: Here, we show an extrapolation example, where
we use a video of a bust captured from the front. Both ro-
tational and positional extrapolation leads to reasonable re-
sults.

or duplicate them (see Fig. 16). In contrast to a standard image-
to-image translation network, our method better generalizes to
scene edits and generates temporally stable, high quality results
(see Fig. 15).

5.2 Animation Synthesis
In this section, we show the capability to re-render dynamic ob-
jects, which allows us to implement applications such as facial
reenactment (see Fig. 3). To this end, we compare against the facial
reenactment pipeline Face2Face [Thies et al. 2016]. We leverage
the 3D face reconstruction of Face2Face and the parametrization of
the template mesh to generate the training data. As a result of the
training procedure, we optimize for a person-specific neural tex-
ture and a person-specific neural renderer. We use the deformation
transfer technique of Face2Face to re-render novel uv-maps of the
target person corresponding to the expressions of a source actor
which is the input to our technique. Fig. 17 shows the advantage of
the trained neural texture. It better captures the idiosyncrasies of
the target actor, thus, enabling us to improve over state-of-the-art
reenactment approaches that are either computer graphics based

8



Figure 13: Novel View Synthesis: in contrast to a static
mean texture, specular highlights are consistently repro-
duced with our approach. We also show the result without
the spherical harmonics layer. As can be seen, the output is
still photo-realistic, but it has a high MSE of 58.1 compared
to 48.2 with our full pipeline (measured on a test sequence
with 250 images). The right column shows the differences in
visual quality. With the spherical harmonics layer, the re-
rendering is sharper and has a clearer specular highlight.

Thies et al. [2016] (Face2Face) or learned Kim et al. [2018] (Deep-
VideoPortraits).

Note that we only have to train a single neural texture and
renderer once for a target actor. We do not have to store multiple
textures for different expressions like in paGAN [Nagano et al.
2018]. Reenactment can be done with any new source actor. Even
real-time reenactment is possible since the rendering only takes
≈ 4ms (mean evaluation time for the test sequence in Fig. 17 on a
Nvidia 1080Ti) in comparison to 10ms for the rendering process of
Face2Face.

While our approach is able to generate photo-realistic reenact-
ment results, it raises ethical concerns. Our digital society is strongly
relying on the authenticity of images and video footage. On one
hand researchers try to close the gap between computer generated
images and real images to create fantastic looking movies, games
and virtual appearances. On the other hand, these techniques can
be used to manipulate or to create fake images for evil purposes.
Image synthesis approaches, especially the ones related to humans,
are therefore of special interest to the digital media forensics com-
munity. Recently, techniques have been proposed that employ deep
neural networks to detect such generated images [Rössler et al.
2018, 2019]. The drawback of these methods is that they rely on a

Figure 14: Overview of our scene editing pipeline. Given
a video sequence, we estimate the geometry of the scene.
We are then able to modify the geometry, e.g., by move
and copy edits. During the edits, we keep track of the uv-
parametrization of the vertices, which allows us to render
a uv-map that is used as input to our neural renderer. The
renderer and its corresponding texture is optimized using
the original input images and the original geometry. Using
the modified uv-map as input, we can apply the renderer to
produce a photo-realistic output of the edited scene.

Figure 15: Editing comparison to Pix2Pix [Isola et al. 2016].
As can be seen, our approach better generalizes to scene ed-
its.

huge training set. Transferability to other synthesis approaches is
very limited, but is getting into the focus of researchers [Cozzolino
et al. 2018].

6 CONCLUSION
In this work, we have presented neural textures, and demonstrated
their applicability in a large variety of applications: novel view
synthesis, scene editing, and facial animation editing. Interestingly,
our rendering is also significantly faster than traditional reenact-
ment, requiring only a few milliseconds for high-resolution output.
However, we believe this is only a stepping stone to much wider
range of applications where we use imperfect 3D content in order to
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Figure 16: Editing a scene with multiple objects, including
removal and cloning. Our approach obtains photo-realistic
results.

generate photo-realistic output. Our approach relies on a geometry
proxy that has to be reconstructed in a preprocessing step. If the
geometry is too coarse, the result quality gracefully degrades, i.e.,
the re-rendered images get more blurry. As the appearance of each
object is unique, we must train the neural texture for every new
object. However, we believe that neural texture estimation based
on a few images in conjunction with a generalized neural renderer
is a very promising direction for future work. Preliminary results
on synthetic data suggest that our neural renderer can be general-
ized; currently, on real data, the size of our dataset (<10 objects) is
limiting, but we believe that this generalization has potential for
many new applications; e.g., transfer learning, where a renderer
can be exchanged by another renderer that, for example, renders
segmentations or the like.

The idea of neural textures is also not only bound to the two-
dimensional setting that is discussed in our work. It would be
straightforward to extend the idea to higher dimensions or other
data structures (e.g., a volumetric grid). Beyond finding the right
scene representation, there are also many other problems that can
be tackled, such as disentangled control over the scene illumination
and surface reflectance. In our work, we assume static illumination
and, thus, we are not able to relight the scene. In addition, we
believe there is a unique opportunity to revisit other components
and algorithms of the traditional rendering pipeline, such as novel
shading and lighting methods, or even use a full differentiable path
tracing framework [Li et al. 2018].

In conclusion, we see a whole new field of novel computer
graphic pipeline elements that can be learned in order to handle
imperfect data captured from the real world. With neural textures,
we demonstrated a first step towards this avenue, showing applica-
tions for photo-realistic novel view point synthesis, scene editing,
as well as animation synthesis. We hope to inspire follow-up work
in this direction.

Figure 17: Comparison to the state-of-the-art facial reenact-
ment approaches of Kim et al. [2018] (DeepVideoPortraits)
and Thies et al. [2016] (Face2Face). As can be seen, our
learning-based approach better captures the person-specific
idiosyncrasies of the target actor. The mouth interior has
more variety, is much sharper, and has less stretching arti-
facts.
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A NETWORK ARCHITECTURE
Our rendering network is based on a U-Net [Isola et al. 2017] with
5-layers, i.e., an encoder-decoder network with skip connections.
For our experiments, we are using the following architecture (see
Fig. 18). Based on an image containing 16 features per pixel (i.e.,
the rendered neural texture), we apply an encoder that is based
on 5 convolutional layers each with instance normalization and a
leaky ReLU activation (negative slope of 0.2). The kernel size of
each convolutional layer is 4 (stride of 2) with output features 64
for the first and 128, 256, 512, 512 respectively for the other layers.
The decoder mirrors the encoder, i.e., the feature channels are the
same as in the respective encoder layer, kernel size is 4 and stride
is 2. For the final output layer, we are using a TanH activation as
in Pix2Pix [Isola et al. 2017].

Figure 18: U-Net architecture of our rendering network.
Given the rendered neural textures, we run an encoder-
decoder network with skip connections (in yellow), to gen-
erate the final output image. Number of output features of
the layers are noted in orange.
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