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Abstract
We present a simple algorithm for computing a
high quality personalized avatar from a single
color image and the corresponding depth map
which have been captured by Microsoft’s
Kinect sensor. Due to the low market price of
our hardware setup, 3D face scanning becomes
feasible for home use. The proposed algorithm
combines the advantages of robust non-rigid
registration and fitting of a morphable face
model. We obtain a high quality reconstruction
of the facial geometry and texture along with
one-to-one correspondences with our generic
face model. This representation allows for a
wide range of further applications such as facial
animation or manipulation. Our algorithm has
proven to be very robust. Since it does not re-
quire any user interaction, even non-expert users
can easily create their own personalized avatars.
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1 Introduction

During the past few years, massive multiplayer
online games (MMOGs) such as World of War-
craft, Aion or Second Life have gained tremen-
dous attention. In these games, millions of
users, each represented by a virtual character –
known as avatar – meet in a three-dimensional
virtual world. Since the users should be distin-
guishable from each other, each user must have
a unique avatar. Most MMOGs offer a charac-
ter editor in which the user can select his avatar
from a set of existing models. These avatars can
be further customized using simple user inter-
faces which allow the user to morph between

Figure 1: Overview of the proposed avatar re-
construction. The upper image shows
our acquisition setup in action. The
lower row shows the recorded color
image and depth scan and the fitted
mesh without and with textures.

different shapes or to include customized tex-
tures or models.

As the graphics in computer games become
ever more realistic and the focus of the games
changes from fantasy scenarios towards real life
settings, the demand for photorealistic avatars,
which resemble the users themselves, is con-
stantly increasing. Unfortunately, current in-
game avatar editors offer only a limited express-
ibility, making it almost impossible for a user to
create a virtual clone for the online world.

Besides their usage in online games and chats,
personalized 3D avatars are also important in
gadget applications such as aging simulations or
digital 3D beauty salons.

In this paper, we present a fully automatic
method for the generation of realistic three-
dimensional face models with textures. As in-



put for our algorithm we use a depth scan and
a color image that were recorded using the Mi-
crosoft Kinect sensor. This device was initially
released as a video game controller for the Mi-
crosoft Xbox. Meanwhile, official open source
drivers have been released which enable the gen-
eral purpose usage of the device on a regular per-
sonal computer. Due to the low market price and
its widespread use, the Microsoft Kinect sensor
is ideally suited for recording personalized 3D
avatars. Using our system, everyone can auto-
matically digitalize his face and create a person-
alized avatar within seconds.

1.1 Related Work

The reconstruction of personalized 3D face
models has become very popular during the last
years. Two different approaches exist for this
purpose: algorithms which try to reconstruct the
3D model solely from color images and algo-
rithms which reconstruct the 3D model by fitting
a template mesh to a depth scan of the face.

The first class of algorithms reconstructs the
facial geometry directly from one or more 2D
images. Tang and Huang [1] automatically ex-
tract salient facial features from a front and pro-
file face image. The detected features are then
used to adapt a coarse template mesh. Since this
method requires a one-to-one relationship be-
tween facial features and the vertices of the tem-
plate mesh, it can only produce very coarse re-
constructions. Blanz and Vetter [2] employ an it-
erative optimization to adapt the parameters of a
three-dimensional morphable model by project-
ing the current morphable model onto the image
plane and then minimizing the difference be-
tween the pixel colors. To improve the stability
of their method, the optimization is performed
in a coarse to fine manner. Breuer et al. [3] use
Support Vector Machines to detect the face in a
2D image and then extract facial features using
a regression- and classification-based approach.
After that, they apply a flip-flop optimization to
determine the best-fitting morphable model for
the detected features, which is, in turn, used to
improve the feature detection and classification.
Instead of reconstructing the three-dimensional
facial model from features in 2D images, Lee
et al. [4] fit a morphable face model in such a
way that the shading of the model is as close

to the shading of the input image as possible.
Commercially available software tools such as
AvMaker, FaceGen or FaceShop also compute
a 3D avatar from features in 2D images. These
features can either be automatically detected or
hand-picked by the user. Common to all meth-
ods which reconstruct the 3D face model solely
from photographs is that while they can accu-
rately reconstruct the face in feature-rich re-
gions, the fitting in feature-less regions like the
cheek or the forehead is rather poor.

Methods of the second category reconstruct
the 3D face by fitting a template mesh to depth
scans. Weissenfeld et al. [5] construct a multi-
resolution detail pyramid of the input face scan
by successive Laplace smoothing. Using a set
of manually selected features, they fit a generic
face model to the multi-resolution detail pyra-
mid in a coarse-to-fine manner. Blanz et al. [6]
describe an iterative algorithm for fitting a mor-
phable model to a textured depth scan. In each
iteration, the current morphable model is pro-
jected onto a two-dimensional cylindrical im-
age. An energy term which considers both, the
color and the depth value after the projection, is
then minimized to get a better-fitting morphable
model. Basso and Verri [7] approximate the in-
put depth scan by an implicit function and then
solve for the parameters of a morphable face
model such that the distance between the face
and the depth scan is minimized. To improve
the convergence of their method, they split the
template mesh into four sub-meshes which are
fitted independently. The sub-meshes are then
smoothly blended to obtain the final reconstruc-
tion. Li et al. [8] employ a sophisticated non-
linear optimization process to fit a source mesh
to a target depth scan. By enforcing local rigid-
ity and global smoothness of the deformation,
they obtain high quality registrations given a
good initial alignment. Most similar to the pro-
posed algorithm is the work recently published
by Kim et al. [9] since they also use non-rigid
registration to fit a common template mesh to
a depth scan. However, our algorithm is more
robust in practice since we do not rely on ro-
bust 2D facial features during the non-rigid reg-
istration and since our regularization term tries
to maintain surface features while their regular-
ization term only minimizes surface stretch.
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Figure 2: Microsoft Xbox Kinect sensor

1.2 Overview

The proposed algorithm automatically recon-
structs a high quality 3D face model with tex-
ture from an RGB image and a depth map by
fitting a morphable face model to the input data.
We use the Microsoft Kinect sensor to capture
an RGB image and the corresponding depth
map from which a metric point cloud is com-
puted. Using four automatically detected feature
points, we estimate an initial rigid alignment of a
common template mesh with the recorded point
cloud. Since this alignment is in general not
good enough to be used as input for the mor-
phable model fitting, we non-rigidly register the
average face of the morphable model with the
input scan. Finally, we use the morphable model
to compute the face which approximates the de-
formed template face best. The result of the
proposed algorithm is a high-quality 3D model
of the scanned face which has one-to-one corre-
spondences to the faces in the morphable model.
Thus, it can be easily analyzed, animated or
modified. To add more realism, we compute
a corresponding texture for the faces using the
captured RGB data.

2 Data Acquisition

In this section, we briefly describe the way to
obtain a raw depth image of the face of a person
sitting in front of the Kinect and the augmenta-
tion of this image with valuable feature points as
well as color information.

2.1 Input Device

The Kinect is a device which combines a regu-
lar RGB camera and a 3D scanner, consisting of
an infrared (IR) projector and an IR camera as
shown in Figure 2. The projector sends several
thousands of structured IR rays into the scene

which are reflected by objects and recaptured
by the IR camera. The distortion between the
emitted and the received pattern is used to re-
construct the depth values for each reflected ray.
The driver interpolates the depth values between
the rays and outputs a 640x480 depth grid with
a precision of 11 bits @ 30 Hz. Microsoft of-
ficially specifies a depth range of 1.2m - 3.5m
but in our experiments we found that a minimum
distance of 0.5m is sufficient to receive good 3D
images.

The RBG image is provided in the same reso-
lution and framerate as the depth data, however,
the two signals do not naturally match due to dif-
ferent extrinsic and intrinsic camera parameters.
The exact parameters may even vary among dif-
ferent Kinect devices which makes an individual
calibration unavoidable.

2.2 Data Preparation

To assist the calibration of the IR and the RGB
camera, we use OpenCV’s calibration routines
to specify the required DOFs. After the cali-
bration, the data is available as 3D point cloud
with natural metric units and a corresponding
RGB value is assigned to each point. Yet, we
still maintain the topology information in form
of the 640x480 grid from the raw data to sim-
plify the feature detection and face segmenta-
tion, which requires neighborhood information
for each point.

The depth data we recieve from the Kinect
in a single frame is quite noisy and can contain
holes at arbitrary positions. To reduce these ef-
fects, we average the depth values of eight suc-
cessive frames, which leads to a much smoother
result. Also, missing points in one frame may
be compensated by other frames in which the
device was able to capture these points. In ad-
dition, we apply a Gauss filter and simple hole-
filling to the temporally smoothed data, which
further improves the input data. Figure 3 shows
a face scan at different stages of the preparation
pipeline. To avoid motion blurring artifacts, it
is required that the user remains motionless for
at least eight frames (0.27s) while capturing the
image.



Figure 3: Left: raw data from a single frame.
Middle: temporally smoothed data.
Right: additionally Gauss-filtered data

2.3 Face and Feature Detection

Assuming that exactly one person is sitting in
front of the Kinect, we first detect the face along
with a number of significant feature points to as-
sist the alignment of the scanned data at a later
stage. We particularly aim to detect the middle
point of each eye, the nose tip and the chin. Our
idea is to locate regions of significant face parts
in the RGB image, then map these regions onto
the geometry data and to proceed the detection
of feature points in the geometry domain.

For the first part, we use OpenCV to find the
bounding rectangles of the face, the eyes and the
nose in the RGB image (see Figure 4). After
we have detected the face on the entire range
of the input RGB image, we reduce the fur-
ther searching domain in the image to the face’s
bounding box and detect the eyes and the nose.
This reduction does not only provide better per-
formance, but also increases robustness since
the algorithm might falsely identify background
parts as an eye or a nose.

Figure 4: Left: face-, nose- and eye-detection on
the RGB image. Middle: temporary
chin features (red) and search domain
for the final chin feature (blue area).
Right: final feature points.

Due to the fact that the RGB data is aligned
with the point cloud and that the topology is the
same in both spaces, we can apply the rectangu-

lar regions directly in the geometry domain.
In order to find the nose tip, we loop through

all 3D points inside the detected nose rectangle
and pick the one with the smallest depth value
as nose feature.

For the chin, no feature detectors are avail-
able in OpenCV which allow for a pre-selection
of the chin’s region in the RGB image. As a so-
lution, we use the following heuristic: We first
perform a line search from the detected nose tip
down the y-axis until we find a significant as-
cend of the depth values. The resulting point
is a temporary feature point which we call the
chin edge. From this point, we sample the same
line back to the nose until we detect a local max-
imum of the depth values. This second tem-
porary feature point is named the chin groove.
We now define the final chin feature to be the
point between the chin groove and the chin edge
which is closest to the camera. In order to com-
pensate for a small roll of the subject’s head (if
the main face axis is not perfectly aligned with
the y-axis), we extend the search region by a
small offset of ±5 pixels in x-direction.

An eye feature would ideally be the point on
the eyeball closest to the camera. However, the
resolution and the quality of the input data is not
sufficient to robustly find these points on the ge-
ometry. As an approximation, we take the center
point of the detected bounding box which turned
out to be a robust estimate for the initial align-
ment at a later stage. Figure 4 (right) shows the
final feature points on a scanned face.

Since the feature detection runs in real-time,
a person sitting in front of the camera gets real-
time feedback of the resulting face scan together
with the detected feature points (see Figure 1).
This allows the user to optimize his position
before he eventually captures the current data.
To further stabilize the features, we perform a
smoothing operation over various frames as we
did on the raw depth data.

2.4 Face Segmentation

The recorded depth data still contains unneces-
sary background data at this point. In order to
reduce the costs in the next steps, we separate
the face from the rest of the input data as seen
in the scanned images from Figure 4. From the
feature detection, we already know some points
which definitly belong to the face. The rest of



Figure 5: Generic face fitting: (from left to
right) input scan, registered average
face and best fitting morphable model.

the points is found with a floodfill-like algorithm
using the detected face feature points as seed. In
each recursion, we check the four-neighborhood
of a current face point whether the depth values
change by more than 5mm. If this is not the case,
we add the corresponding point to the list of face
points and recursively call the routine with this
point. This method has turned out to robustly
separate the face from the background and the
body of the user.

3 Fitting a Generic Face Model

The point cloud that was generated in the previ-
ous step represents the geometry of the scanned
face. However, except for the few detected fea-
ture points, the geometry does not contain any
semantic information which would be necessary
to animate or further process the face. To at-
tribute the scanned face with a semantic mean-
ing, we fit a morphable face model [2] to the
scan. Therefore, we compute a rough initial
alignment of the scanned point cloud P and the
average face T of our morphable model. Given
the previously computed features points and the
corresponding points on the generic face model,
we can compute the shape-preserving trans-
formation which best aligns the two data sets
by performing a generalized Procrustes analy-
sis [10].

Theoretically, one could now solve for the pa-
rameters of the morphable model in such a way
that it approximates the input scan as good as
possible. Unfortunately, morphable models are
not invariant under shape-preserving transfor-
mations which means that the input shape must
be perfectly scaled and aligned with the mor-
phable model to generate satisfactory results.

We found that it is very difficult to produce such
a rigid alignment without any user assistance
or very accurate marker positions since a reg-
istration using the ICP algorithm [11] tends to
converge into a local minimum if the deforma-
tion between the source and the target shape is
too large. To obtain a more robust alignment
for the final fitting of the morphable model, we
compute a non-rigid registration of the template
model T and the input scan.

Given a template mesh T and a coarsly
aligned input scan P , the goal of the non-rigid
registration is to find a plausible space defor-
mation Φ such that the distance between the de-
formed template mesh Φ(T ) and the input scan
P is minimized.

Following Suessmuth et al. [12], we formu-
late the non-rigid registration as a variational
problem. Therefore, we define a registration en-
ergy Ereg, which is composed of a fitting term
Efit, that attracts the template mesh towards the
input scan geometry, and an internal energy term
Edef , that serves as regularizer and prevents un-
natural deformations of the template mesh. The
deformation Φ which best aligns the template
mesh with the input scan is then found by mini-
mizing the registration energy.

3.1 Fitting Energy Term

As can be seen in the left image of Figure 5,
the pre-processed scanner data is still noisy, con-
tains striping artifacts and may contain holes. To
alleviate these artifacts, we do not register the
template mesh directly with the scanner data but
with an implicit function f which has been fitted
to it. Since the implicit function f is computed
in such a way that its zero-set approximates the
input data in a least squares sense, it reduces the
noise and closes the remaining holes. Given the
implicit function f : R3 7→ R, the distance d
of a point x to the zero-set of f can be approxi-
mated by

d(x, f) =
|f(x)|
‖∇f(x)‖2

.

The distance between the deformed template
mesh Φ(T ) and the zero-set of f , which pro-
vides us with the fitting energy term, can then
be defined as the sum over the squared distances



at the vertices v̂i of Φ(T ):

Efit =
∑

v̂i∈Φ(T )

(
|f(vi)|
‖∇f(vi)‖2

)2

(1)

3.2 Regularization Energy Term

We use a variant of the embedded graph based
mesh deformation algorithm by Sumner et
al. [13] to model the deformation of the template
mesh. Thereby, a global space deformation is
obtained by blending neighboring affine trans-
formations Ai(x) = Mi(x−pi) +pi + ti with
local support, which are organized in a sparse
graph. Here, Mi is a 3x3 matrix, pi is the node’s
position and ti is a translation vector. The lo-
cal transformations define how the surrounding
space is deformed. To obtain a deformation,
which maintains local surface features, the lo-
cal transformations should be close to rigid. An
energy term Erot, which punishes the deviation
of a local transformation Mi from being rigid,
can be defined as:

Erot(Mi) = ‖MT
i Mi − I‖2F (2)

Since neighboring transformations have over-
lapping influence, they affect a common region
in space. It is therefore important that they are
consistent w.r.t. one another. This is enforced
by a consistency energy term Econ, which mea-
sures the distance between the position to where
a graph node is transformed by its own transfor-
mation and the position where it is mapped to by
the transformation of a neighboring graph node:

Econ(eij) = ‖Ai(pj)−Aj(pj)‖22 (3)

+ ‖Aj(pi)−Ai(pi)‖22 ,

where eij is the edge connecting the two nodes
i and j and pi and pj are the respective node
positions.

3.3 Optimization

A combination of the fitting energy term and the
two regularization energy terms leads to an en-
ergy function Ereg, which is a measure for the
quality of a registration introduced by a given
deformation graph:

Ereg = αEfit+β
∑
i

Erot(Mi)+γ
∑
eij

Econ(eij).

(4)

Here, the first sum runs over all nodes in the de-
formation graph and the second sum runs over
all edges. An optimal deformation Φ, which
registers the template mesh T with the input
scan can now be computed by minimizing Equa-
tion (4) for the unknown node transformations
using a modified Gauss-Newton algorithm. As
proposed by Li et al. [8], we increase the in-
fluence of the fitting energy in each iteration by
doubling α. Initially, we set α = 4, β = γ = 1.

3.4 Fitting the morphable face model

The result of the non-rigid registration step is
a deformed template mesh Φ(T ) which tightly
fits the input scan. However, as can be seen in
Figure 5 (middle), this mesh still contains the
bumps and dents that were originally present in
the scanner data. To obtain the final 3D recon-
struction of the face, we fit a morphable face
model [2] to the deformed template obtained
by the non-rigid registration. This projects the
solution into the space of reasonable faces and
thereby removes the mentioned artifacts.

Since the deformed template mesh provides
one-to-one correspondences with the average
shape of our morphable model, we can now ro-
bustly align Φ(T ) with the morphable model us-
ing a Procrustes analysis again. Let T̂ be the
deformed template mesh that was aligned with
the average face T of the morphable model and
E the (reduced) eigenbasis of the morphable
model. We can thus construct a new face F
from a given coefficient vector c by transform-
ing the coefficient vector back into face space
and adding the average face: F = T +E ·c. We
find the coefficients c of the morphable model
which approximate T̂ best by minimizing the
least squares distance to the computed morphF :

min
c
‖(T + E · c)− T̂ ‖22.

To obtain c, we solve the resulting normal equa-
tions:

ETE · c = ET · (T̂ − T ) (5)

Since the pseudo-inverse of the system matrix
ETE can be precomputed for the given mor-
phable model, the unknown coefficients can be
computed by a simple matrix-vector multiplica-
tion.



Figure 6: Transfering an animation onto a captured avatar.

4 Results

We have tested the proposed method on 20 indi-
viduals. In all cases, the proposed method was
able to automatically produce accurate results.
The results for four test persons are shown in
Figure 8. As texture, we project the RGB im-
age back onto the reconstructed face. The mor-
phable model that we used for face fitting has
been constructed from 53 faces [14], which were
registered using the proposed algorithm for non-
rigid registration. For all examples shown in this
paper, we used the 25 most significant principal
components of the face space to span the eigen-
basis E. In the non-rigid registration, we per-
formed six Gauss-Newton iterations to warp the
template mesh towards the input scan. The re-
construction of the fully textured facial avatars
took on average 18 seconds on an Intel Core i7
processor at 2.93GHz.

To assess the quality of the reconstructed 3D
face geometries, we compare a face model that
was reconstructed using our algorithm to ground
truth data in Figure 7. The ground truth face

0mm

4mm

2mm

Figure 7: Comparison with ground truth. From
top left to bottom right: depth scan, fit-
ted result, ground truth, average shape
and deviation from ground truth.

model was generated by scanning the test person
with a high quality structured light scanner. The
maximum deviation of our reconstruction from
the ground truth model is 4.7mm, while the av-
erage deviation is roughly 2mm.

Since the morphed face model generated by
our algorithm has one-to-one correspondences
with the average face, we can directly transfer
semantic informations that are annotated to the
average face onto our reconstruction. For ex-
ample, facial animations (cf. Figure 6) can be
easily cloned onto the new geometry.

5 Conclusion

We have presented a novel system for the au-
tomatic generation of high-quality personalized
avatars using the Microsoft Kinect sensor. The
proposed system allows a huge audience to gen-
erate high-quality facial models within seconds.
Using non-rigid registration to compute corre-
spondences for the subsequent morphable model
fitting makes our approach very robust and al-
lows to generate convincing results even for bad
input data.

The rather small morphable model we are us-
ing is currently one of the limiting factors. We
plan to extend our data base and to handle mod-
els of the whole head. We further plan to extract
geometry and texture information from multiple
views and to capture whole head scans in super-
resolution by registering the obtained input data.
By using a segmented head model, we could fur-
ther improve the expressability of the morphable
model. In addition, we plan to animate the com-
puted results and provide the user the possibility
to customize his avatar.
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Figure 8: Face reconstruction results for four individuals. (from left to right) input RBG and depth
images, processed depth scan, fitted face model and textured face from three different views.
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