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7. Results and Evaluations

Comparisons to other methods

Evaluations of the Multi-level Face Model
Evaluation of di�erent sizes of the corrective space

Lorem ipsum

5. Corrective Space2. Background 

Captures coarse deformations

Computed from 3D scans

Does not generalize to in-the-wild faces
Multi-level 3D human face model learning from monocular images
3D face reconstruction from a single monocular image in 4ms

Construction of current 3D face models:
  high-quality scans are required 
   not generalizable to in-the-wild faces 

Our approach jointly learns 
 1) a 3D face regressor, on the basis of 
 2) a learned parametric face model, 
from just monocular images.
   

3. Training Pipeline

Learnt from just monocular images, it captures the out-
of-subspace deformations of geometry and reflectance.

https://www.overleaf.com/12558420gdwpm�sryys

1. Summary

6. Loss Function

4. Base Model

Combination of a convolutional encoder with a 3D face model and an image           
formation layer (all modules are differentiable)
Fixed base model for regularization
Learned corrective space for out-of-subspace variation
Trained using a self-supervised loss function
Allows for high frame-rate reconstruction at test time
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