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In this supplemental material, we expand on some points from the main
paper. We first perform an ablation study on the extrinsics losses in Sec. 1. In
Sec. 2, we describe the error measures we employ. In Sec. 3, we compare error
measures on the reduced and full test sets. Sec. 4 shows the randomly picked
single shape that we use in one of the generalization experiments. Sec. 5 contains
more experiments using object-level priors. Sec. 6 shows different number of
patches and network/latent code sizes. Next, we measure the performance under
synthetic noise in Sec. 7. We show preliminary results on a large scene in Sec. 8.
Finally, in Sec. 9, we provide some remarks on the concurrent work DSIF [1].

1 Loss Ablation Study

We run an ablation study of each of the extrinsics losses. We also test whether
guiding the rotation via initialization and a loss function helps. Table 1 contains
the results. Due to our initialization, as described in Sec. 3.2, the extrinsics losses
are not necessary in this setting. However, as shown in Sec. 5 in this supplemen-
tary material, they are necessary when the extrinsics are regressed instead of
free. Initializing and encouraging the rotation towards normal alignment helps.
We do not use Lrecon on the mixture because that modification does not suffi-
ciently constrain the patches to individually reconstruct the surface, as Fig. 1
shows.

2 Error Metrics

Similar to Genova et al. [1], we evaluate using IoU, Chamfer distance and F-
score. We report the mean values across different test sets.

IoU : For a given watertight groundtruth mesh, we extract the reconstructed
mesh using marching cubes at 1283 resolution. We then sample 100k points
uniformly in the bounding box of the GT and check for both the generated
mesh and the GT whether each point is inside or outside. The final value is the
fraction of intersection over union, multiplied by a factor of 100. Higher is better.

Chamfer Distance: Here, we sample 100k points on the surface of both the
groundtruth and the reconstructed mesh. We use a kD-tree to compute the
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Table 1. Ablation Study of PatchNet. We remove each of the extrinsics losses. We
also impose the reconstruction loss on the mixture (using gi(x) from Eq. 11 instead of
f(x, zi,p, θ)).

IoU Chamfer F-score

no Lsur 92.0 0.049 94.8
no Lcov 90.7 0.051 93.6
no Lrot 92.5 0.043 95.4
no Lscl 91.2 0.031 94.3
no Lvar 91.6 0.045 94.4

random rotation initialization and no Lrot 89.0 0.048 93.1

ours 91.6 0.045 94.5
ours with Lrecon on mixture 94.0 0.026 96.8

mixture patches

Lrecon on mixture

ours

Fig. 1. Mixture Reconstruction Loss. Imposing the reconstruction loss on the mixture
instead of directly on the patches leads to individual patches not matching the surface.
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closest points from the reconstructed to the groundtruth mesh and vice-versa.
We then square these distances (L2 Chamfer) and sum the averages of each
direction. For better readability, we finally multiply by 100. Lower is better.

F-score: For each shape, we threshold the point-wise distances computed
before at 0.01 (all meshes are normalized to a unit cube). We then compute the
fraction of distances below the threshold, separately for each direction. Finally,
we take the harmonic mean of both these values and multiply the result by 100.
Higher is better.

In cases where a network does not produce any surface, we set the value of
IoU to 0, the Chamfer distance to 100, and the F-score to 0.

3 Reduced Test Set

Our reduced test set on ShapeNet consists of 50 randomly chosen test shapes
per category. Table 2 shows how well the error measures on this reduced test set
approximate the error measures on the full test set.

Table 2. Reduced Test Set vs. Full Test Set. The computed metrics on the reduced
test set of ShapeNet are a good approximation of the computed metrics on the full test
set. This is an extended version of Table 1 from the main paper.

IoU Chamfer F-score
Category DeepSDF Baseline Ours DeepSDF Baseline Ours DeepSDF Baseline Ours

full red. full red. full red. full red. full red. full red. full red. full red. full red.

airplane 84.9 84.0 65.3 64.2 91.1 90.7 0.012 0.023 0.077 0.084 0.004 0.006 93.0 92.3 72.9 71.6 97.8 97.5
bench 78.3 77.1 68.0 65.7 85.4 83.7 0.021 0.015 0.065 0.043 0.006 0.006 91.2 90.4 80.6 80.1 95.7 94.9
cabinet 92.2 89.1 88.8 84.8 92.9 91.6 0.033 0.027 0.055 0.047 0.110 0.119 91.6 90.3 86.4 84.3 91.2 91.8
car 87.9 88.4 83.6 84.3 91.7 92.6 0.049 0.057 0.070 0.074 0.049 0.050 82.2 82.1 74.5 74.4 87.7 87.8
chair 81.8 80.1 72.9 70.3 90.0 88.6 0.042 0.041 0.110 0.118 0.018 0.013 86.6 86.0 75.5 74.8 94.3 93.5
display 91.6 92.9 86.5 89.1 95.2 95.5 0.030 0.010 0.061 0.034 0.039 0.049 93.7 95.1 87.0 89.8 97.0 97.3
lamp 74.9 72.3 63.0 63.4 89.6 88.0 0.566 2.121 0.438 0.257 0.055 0.063 82.5 79.9 69.4 70.1 94.9 94.0
rifle 79.0 78.0 68.5 66.0 93.3 93.1 0.013 0.012 0.039 0.046 0.002 0.001 90.9 90.7 82.3 80.4 99.3 99.3
sofa 92.5 92.2 85.4 84.5 95.0 95.1 0.054 0.075 0.226 0.236 0.014 0.012 92.1 91.3 84.2 83.0 95.3 95.3
speaker 91.9 90.5 86.7 84.9 92.7 90.8 0.050 0.060 0.094 0.121 0.243 0.242 87.6 84.7 79.4 75.7 88.5 85.1
table 84.2 83.4 71.9 69.5 89.4 90.3 0.074 0.043 0.156 0.169 0.018 0.017 91.1 91.5 79.2 79.1 95.0 96.1
telephone 96.2 96.0 95.0 94.1 98.1 98.0 0.008 0.010 0.016 0.016 0.003 0.004 97.7 97.3 96.2 94.7 99.4 99.3
watercraft 85.2 84.9 79.1 78.5 93.2 93.1 0.026 0.019 0.041 0.031 0.009 0.006 87.8 88.2 90.2 80.6 96.4 96.6

mean 86.2 85.3 78.1 76.9 92.1 91.6 0.075 0.193 0.111 0.098 0.044 0.045 89.9 89.2 80.6 79.9 94.8 94.5

4 Generalization Experiments – Single Shape

Fig. 2 shows the randomly picked single shape on which we trained PatchNet in
Sec. 4.2 of the main paper.

5 Object-Level Priors

5.1 Surface Reconstruction

We report surface reconstruction errors using object-level priors (see Sec. 4.3
from the main paper). Note that the experiments in Sec. 4.3 of the main paper
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Fig. 2. Single Shape. In one of the generalization experiments in Sec. 4.2 of the main
paper, we train PatchNet on this randomly chosen groundtruth shape.

use the most competitive setting of the global-patch baseline (i.e., pretrained on
all categories and then refined) and the least competitve setting of PatchNet (i.e.,
pretrained on one category and not refined). This demonstrates how well our
proposed PatchNet generalizes. For consistency, for the DeepSDF-based baseline,
we choose the same setting as for the global-patch baseline. Note that that setting
is virtually on par with the most competitive DeepSDF setting (i.e., pretrained
on one category and then refined).

Settings Both our network and the baselines consist of a four-layer ObjectNet
and the standard final eight FC layers. We pretrain the final eight FC layers
either on the reduced training set of all categories or on all shapes from the
Cabinets category training set. We then either keep those pretrained weights
fixed while training ObjectNet or we allow them to be refined. While at training
time, each phase lasts 1000 epochs, we reduce this to 800 epochs at test time.

Results Table 3 contains the quantitative results. The baselines do not gener-
alize well if they are kept fixed. Refinement improves error measures.

Table 3. Surface Reconstruction with ObjectNet. We pretrain the final eight layers
either on one category (one) or on all categories (all). We then either keep those layers
fixed (fix.) or refine them (ref.).

baseline DeepSDF-based ours
one all one all one all

fix. ref. fix. ref. fix. ref. fix. ref. fix. ref. fix. ref.

a
ir
p
la

n
e
s IoU 35.9 70.9 60.2 73.3 47.0 75.6 69.9 74.1 67.5 68.5 71.9 74.2

Chamfer 0.710 0.146 0.218 0.147 0.546 0.049 0.127 0.050 0.203 0.182 0.179 0.170
F-score 37.5 76.0 63.6 78.3 49.1 82.5 76.4 81.6 71.7 74.1 77.9 79.7

s
o
fa

s

IoU 76.1 81.8 76.3 84.3 76.4 79.7 82.4 76.6 85.3 86.2 84.9 86.0
Chamfer 0.416 0.159 0.398 0.171 0.467 0.178 0.282 0.406 0.118 0.139 0.236 0.082
F-score 69.0 75.2 71.8 77.9 70.1 72.3 77.5 71.8 79.0 80.7 79.5 79.9
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5.2 Ablation Study

We evaluate the extrinsics losses in the context of surface reconstruction with
object-level priors. We use the version of our method from the main paper:
pretrained on the Cabinets category and without refinement. We perform the
ablation study on the Sofas category.

The quantitative results are in Table 4. The network failed to reconstruct
without Lcov.

Table 4. Ablation Study with Object-level Priors. We remove each of the extrinsics
losses.

IoU Chamfer F-score

no Lsur 87.6 0.076 82.6
no Lscl 75.5 0.154 54.2
no Lvar 71.8 0.269 47.3

ours 85.3 0.118 79.0
ours with Lrecon on mixture 84.9 0.116 78.1

5.3 Partial Point Cloud Completion

We report additional depth-map completion results using the same settings for
our method that we use for the baselines in the main paper (pretrained on
all categories and refined). Note that in the main paper, we report the shape-
completion results of the most disadvantageous version of our method (according
to Table 3). Table 5 contains the quantitative results. In all cases, our method
after local refinement yields the best results.

Table 5. Partial Point Cloud Completion from Depth Maps. We complete depth maps
from a fixed camera viewpoint and from per-scene random viewpoints.

sofas fixed sofas random airplanes fixed airplanes random
acc. F-score acc. F-score acc. F-score acc. F-score

baseline 0.094 43.0 0.092 42.7 0.069 58.1 0.066 58.7
DeepSDF-based baseline 0.106 33.6 0.101 39.5 0.066 56.9 0.065 55.5
ours (main paper) 0.091 48.1 0.077 49.2 0.058 60.5 0.056 59.4
ours+refined (main paper) 0.052 53.6 0.053 52.4 0.041 67.7 0.043 65.8
ours (baseline-matched) 0.088 47.5 0.074 50.0 0.052 64.8 0.050 64.3
ours+refined (baseline-matched) 0.061 54.7 0.056 53.5 0.045 70.3 0.044 69.9

6 Number of Patches and Network/Latent Code Sizes

Fig. 3 shows the mean error metrics on the reduced ShapeNet test set when
training on the reduced ShapeNet training set. We try out different sizes. Size
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refers to both the dimensions of the patch latent vector and the hidden dimen-
sions of PatchNet, as in Sec. 4.2. The gap between size 128 and 512 is much
smaller than between 32 and 128. Furthermore, using 100 patches instead of 30
yields only marginal gains at best.

Fig. 4 shows the per-category error metric on the reduced ShapeNet test set
when training on the reduced ShapeNet training set. We conduct this experiment
with different numbers of patches. Apart from the outlier categories cabinet,
car, and speaker, we observe that the error metrics behave very similar across
categories. They improve strongly when going from 3 to 10 and from 10 to 30
patches and they improve at most slightly when going from 30 to 100 patches.

Fig. 3. Mean error metrics on the reduced ShapeNet test set for different numbers of
patches and network/latent code sizes.

Fig. 4. Per-category error metrics on the reduced ShapeNet test set for different num-
bers of patches.

7 Synthetic Noise

We investigate the robustness of PatchNet by adding Gaussian noise to the
groundtruth SDF values of the reduced test set. We use the PatchNet trained
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with default settings, which also means that it has only seen unperturbed SDF
data during training. The Gaussian noise has zero mean and different standard
deviations σ. For reference, the mesh fits tightly into the unit sphere, as men-
tioned in Sec. 3.2. The results are in Table 6.

Table 6. Synthetic Noise at Test Time.

IoU Chamfer F-score

σ = 0.1 81.2 0.037 85.3
σ = 0.01 90.3 0.045 94.3
σ = 0.001 91.5 0.047 94.4

σ = 0 (ours) 91.6 0.045 94.5

8 Preliminary Results on ICL-NUIM

Once trained, a PatchNet can be used for any number of patches at test time.
Here, we present some preliminary results on the large living room from ICL-
NUIM [3].

Since the scene is already watertight, we skip the depth fusion step of the
preprocessing method. We reduce the standard deviation used to generate SDF
samples by a factor of 100 to account for scaling differences. Overall, we sample
50 million SDF samples.

For PatchNet, we use 800 patches. We keep the extrinsics fixed at their initial
values since we found that to improve the reconstruction. We optimize for 10k
iterations, halving the learning rate every 2k iterations. During optimization,
25k SDF samples are used per iteration. The baselines are trained with the
same modified settings.

The results are in Fig. 5. Note that due to our extrinsics initialization (Sec. 3.2)
and Lvar, all patches have similar sizes, which leads to a wasteful distribution.

9 Remarks on the Concurrent Work DSIF [1]

For completeness, we provide some remarks on the unpublished, but concurrent
related work Deep Structured Implicit Functions (DSIF) by Genova et al. [1]1. In
our terminology, they use a network from prior work (SIF [2]) to regress patch
extrinsics from depth maps of 20 fixed viewpoints. They then use a point-set
encoder to regress patch latent codes from backprojected depth maps according
to the regressed extrinsics. Finally, they propose a modified version of Occupan-
cyNetworks [4] to regress point-wise occupancy probabilities.

1 After submission of this work, DSIF was published at CVPR 2020 and renamed to
Local Deep Implicit Functions for 3D Shape.
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Groundtruth

Mixture (Ours) Patches (Ours)

DeepSDF Our Global Baseline

Fig. 5. Preliminary Results on ICL-NUIM.
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As Table 2 in the main paper shows, our proposed method outperforms theirs
almost everywhere despite being trained on only ∼ 4% of the training data. Since
they impose their reconstruction loss on the final mixture, we do the same for
a comparison in Table 1 in this supplementary material. Using 32 patches and
Nz = 128, their method obtains an F-score below 95 (on the full test set), while
our method reaches 96.8 (on the reduced test set; which is very representative
of the full test set, see Sec. 3).

Furthermore, they regress the patch extrinsics with a network taken from
prior work [2], while we show that it is possible to directly and effectively initialize
them. Because DSIF regresses extrinsics, it can have issues predicting extrinsics
for shapes very different from the training data, while we by construction do not
have such issues. It also turns out that the isotropic Gaussian weights we use in
our proposed method are sufficient to outperform their method, which uses more
complicated anisotropic Gaussians. Finally, for their encoder to work, the input
geometry needs to be represented in some way (which is a non-trivial decision
that might impact performance), while we avoid this issue by auto-decoding.
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