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Abstract—

In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of
reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an
expert-designed generative model that serves as decoder. The core innovation is the differentiable parametric decoder that encapsulates
image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic
meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining
CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a
single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in
an unsupervised manner, which renders training on very large (unlabeled) real world datasets feasible. The obtained reconstructions
compare favorably to current state-of-the-art approaches in terms of quality and richness of representation. This work is an extended
version of [1], where we additionally present a stochastic vertex sampling technique for faster training of our networks, and moreover, we
propose and evaluate analysis-by-synthesis and shape-from-shading refinement approaches to achieve a high-fidelity reconstruction.

1 INTRODUCTION

ETAILED, dense 3D reconstruction of the human face
from image data is a longstanding problem in computer
vision and computer graphics. Previous approaches have
tackled this challenging problem using calibrated multi-
view data or uncalibrated photo collections [2], [3]. Robust
and detailed three-dimensional face reconstruction from a
single arbitrary in-the-wild image, e.g., downloaded from
the Internet, is still an open research problem due to the
high degree of variability of uncalibrated photos in terms
of resolution and employed imaging device. In addition,
in unconstrained photos, faces show a high variability in
global pose, facial expression, and are captured under diverse
and difficult lighting. Detailed 3D face reconstruction is the
foundation for a broad scope of applications, which range
from robust face recognition, over emotion estimation, to
complex image manipulation tasks. In many applications,
faces should ideally be reconstructed in terms of meaningful
low-dimensional model parameters, which facilitates inter-
pretation and manipulation of reconstructions (cf. [4]).
Recent monocular reconstruction methods broadly fall
into two categories: Generative and regression-based. Gener-
ative approaches fit a parametric face model to image and
video data, e.g., [5], [6], [7], by optimizing the alignment
between the projected model and the image [4], [8], [9],
[10], [11]. State-of-the-art generative approaches capture very
detailed and complete 3D face models on the basis of seman-
tically meaningful low-dimensional parameterizations [4],
[8]. Unfortunately, the fitting energies are usually highly non-
convex. Good results thus require an initialization close to
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the global optimum, which is only possible with some level
of control during image capture or additional input data,
e.g., detected landmarks.

Only recently, the first regression-based approaches for
dense 3D face reconstruction based on deep convolutional
neural networks were proposed. Richardson et al. [12] use
iterative regression to obtain a high quality estimate of pose,
shape and expression, and finer scale surface detail [13] of
a face model. The expression-invariant regression approach
of Tran et al. [14] obtains high-quality estimates of shape
and skin reflectance. Based on an image-to-image translation
network, Sela et al. [15] obtain the facial geometry from
a single image by translating the input image to a depth
map. Unfortunately, these approaches can only be trained
in a supervised fashion on corpora of densely annotated
facial images whose creation poses a major obstacle in
practice. In particular, the creation of a training corpus of
photo-realistic synthetic facial images that include facial hair,
parts of the upper body and a consistent background is
challenging. While the refinement network of Richardson
et al. [13] can be trained in an unsupervised manner, their
coarse shape regression network requires synthetic ground
truth data for training. Also, the quality and richness of
representation (e.g., illumination and colored reflectance in
addition to geometry) of these methods does not match
the best generative ones. However, trained networks are
efficient to evaluate and can be trained to achieve remarkable
robustness under difficult real world conditions.

This paper contributes a new type of model-based face
autoencoder (MoFA) that joins forces of state-of-the-art
generative and CNN-based regression approaches for dense
3D face reconstruction via a deep integration of the two on
an architectural level. Our network architecture is inspired by
recent progress on deep convolutional autoencoders, which,
in their original form, couple a CNN encoder and a CNN
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decoder through a code-layer of reduced dimensionality [16],
[17], [18]. Unlike previously used CNN-based decoders,
our convolutional autoencoder deeply integrates an expert-
designed decoder. This layer implements, in closed form,
an elaborate generative analytically-differentiable image
formation model on the basis of a detailed parametric 3D face
model [5]. Some previous fully CNN-based autoencoders
tried to disentangle [19], [20], but could not fully guarantee
the semantic meaning of code layer parameters. In our new
network, exact semantic meaning of the code vector, i.e., the
input to the decoder, is ensured by design. Moreover, our
decoder is compact and does not need training of enormous
sets of unintuitive CNN weights.

Unlike previous CNN regression-based approaches for
face reconstruction, a single forward pass of our network
estimates a much more complete face model, including pose,
shape, expression, skin reflectance, and illumination, at a
high quality. Our new network architecture allows, for the
first time, combined end-to-end training of a sophisticated
model-based (generative) decoder and a CNN encoder, with
error backpropagation through all layers. It also allows, for
the first time, unsupervised training of a network that recon-
structs dense and semantically meaningful faces on unlabeled
in-the-wild images via a dense photometric training loss. In
consequence, our network generalizes better to real world
data compared to networks trained on synthetic face data
[12], [13]. This article builds upon the work of Tewari et al.
[1]. In this version, we give more implementation details,
introduce a stochastic vertex sampling strategy to train the
networks faster, and also provide an extended evaluation
of the original approach. Since learning-based approaches
have limited capacity, they have to trade-off the quality of
individual reconstructions in order to work on a diverse
range of images. Therefore, we also present and evaluate two
additional optimization-based techniques that can be added
as refinement steps to further improve the quality of the
results. Our focus is on a fast data-parallel implementation
of these two additional steps.

2 RELATED WORK

In this section, we summarize previous works that are
related to our approach. We focus on parametric model
fitting and CNN approaches in the context of monocular face
reconstruction. For further work on general template-based
mesh tracking, please refer to [2], [9], [10], [11], [21].
Parametric Face Models: Active Appearance Models
(AAMs) use a linear model for jointly capturing shape and
texture variation [22]. Matching an AAM to an image is a
registration problem, usually tackled via energy optimization.
A closely related approach to AAMs is the 3D morphable
model of faces (3DMM) [5], which has been used for learning
facial animations from 3D scans [6]. In [7], a parametric
head model has been employed to modify the relative head
pose and camera parameters of portrait photos. Recently, a
3DMM that incorporates a feature-based texture model that
is obtained from in-the-wild images has been proposed [23].
Monocular Optimization-based Reconstruction: Many
monocular reconstruction approaches solve an optimization
problem to fit a model to a given image. For example, the
3DMM has been used for monocular reconstruction [24]
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and image collection-based reconstruction [3]. In [8], high-
quality 3D face rigs are obtained from monocular RGB
video based on a multi-layer model. Even real-time facial
reconstruction and reenactment has been achieved [4], [25].
Compared to optimization-based approaches, ours differs
in two main regards. First, our network efficiently regresses
model parameters without requiring iterative optimization.
Second, given a cropped face image, our method does not
require an initialization of the model parameters, which is a
significant advantage over optimization-based techniques.

Deep Learning for Coarse Face Reconstruction: The
detection of facial landmarks in images is an active area
of research [26], [27]. Various approaches are based on
deep learning, including CNN cascades [28], [29], a deep
face shape model based on Restricted Boltzmann Machines
[30], a recurrent network with long-short term memory
[18], a recurrent encoder-decoder network for real-time
facial landmark detection in video [31], or a two-stage
convolutional part heatmap regression approach [32]. In [33],
a multi-task CNN is trained to predict several face-related
parameters (e.g. pose, gender, age), in addition to facial
landmarks. These deep learning approaches share common
limitations: They are trained in a supervised manner and
predict only sparse information. In contrast, our approach works
unsupervised and obtains a dense reconstruction by regressing
generative model parameters.

Deep Learning for Dense Face Reconstruction: Apart
from the approaches mentioned above, there exist several
dense deep learning approaches. A multilayer generative
model based on deep belief networks for the generation of
images under new lighting has been introduced in [34]. A
face identity-preserving (FIP) descriptor has been proposed
for reconstructing a face image in a canonical view [35]. The
Multi-View Perceptron approach for face recognition learns
disentangled view and facial identity parameters based
on a training corpus that provides annotations of these
dimensions [36]. The generation of faces from attributes
[37] and dense shape regression [38] have also been studied.
Non-linear variants of AAMs based on Deep Boltzmann
Machines have been presented in [39], [40]. In [12], a
CNN is trained using synthetic data for extracting the face
geometry from a single image. Unsupervised refinement
of these reconstructions has been proposed in [13]. In [15],
the authors propose an image-to-image translation network
that converts the input image into a depth image along
with a facial correspondence map. Tuan Tran et al. [14] used
photo collections to obtain the ground truth parameters from
which a CNN is trained for regressing facial identity. In
[41], a CNN is trained under controlled conditions in a
supervised fashion for facial animation tasks. A framework
for face hallucination from low-resolution face images has
been proposed in [42]. Recently, data-driven approaches for
the synthesis of photorealistic texture maps [43] and fine-
scale geometric skin detail [44] have been proposed. Jackson
et al. [45] train a CNN that directly regresses a volumetric
3D face representation from a single image. In [46], a CNN is
used to estimate surface normals from a given input image.
Dou et al. [47] trained a network to regress the 3DMM
parameters using synthetic images, akin to [12]. All the
discussed approaches require annotated training data. Since
the annotation of a large image body is extremely expensive,
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some approaches (e.g. [12], [13]) resort to synthetic data.
However, synthetic renderings usually lack realistic features,
which has a negative impact on the reconstruction accuracy.
In contrast, our approach uses real data and does not require
ground truth model parameters.

Autoencoders: Autoencoders approximate the identity
mapping by coupling an encoding stage with a decod-
ing stage to learn a compact intermediate description, the
so-called code vector. They have been used for nonlinear
dimensionality reduction [16] and to extract biologically
plausible image features [17]. An appealing characteristic is
that these architectures are in general unsupervised, i.e., no
labeled data is required. Closely related are approaches that
consider the encoding or decoding stage individually, such
as inverting a generative model [48], or generating images
from code vectors [49]. Autoencoders have been used to
tackle a wide range of face-related tasks, including stacked
progressive autoencoders for face recognition [50], real-time
face alignment [51], face recognition using a supervised
autoencoder [52], learning of face representations with a
stacked autoencoder [53], or face de-occlusion [18]. The Deep
Convolutional Inverse Graphics Network (DC-IGN) learns inter-
pretable graphics codes that allow the reproduction of images
under different conditions (e.g. pose and lighting) [19]. This
is achieved by using mini-batches where only a single scene
parameter is known to vary. The disentanglement of code
variables, such as shape and scene-related transformations
has been considered in [20]. Our proposed approach stands
out from existing techniques, since we consider the full set
of meaningful parameters and do not need to group images
according to known variations.

Deep Integration of Expert Layers: Inspired by Spatial
Transformer Networks [54], the gvun library implements low-
level geometric computer vision layers [55]. Unsupervised
volumetric 3D object reconstruction from a single-view by
Perspective Transformer Nets has been demonstrated in [56].
Unlike these approaches, we tackle a higher level computer
vision task, namely the monocular reconstruction of semanti-
cally meaningful parameters for facial geometry, expression,
illumination, and camera extrinsics. Recently, using a 3DMM
as a spatial transformer within an unsupervised learning
framework to normalize images in terms of 3D head pose
and self-occlusion was proposed in [57]. Bhagavatula et
al. [58] use a 3D spatial transformer to learn 3D pose and
subject-specific shape even in unconstrained poses.

3 OVERVIEW

Our novel deep convolutional model-based face autoencoder
enables unsupervised end-to-end learning of meaningful
semantic face and rendering parameters, see Fig. 1. To this
end, we combine convolutional encoders with an expert-
designed differentiable model-based decoder that analyti-
cally implements image formation. The decoder generates
a realistic synthetic image of a face and enforces semantic
meaning by design. Rendering is based on an image for-
mation model that enforces full semantic meaning via a
parametric face prior. More specifically, we independently
parameterize pose, shape, expression, skin reflectance and
illumination. The synthesized image is compared to the input
image using a robust photometric loss Ej.ss that includes
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statistical regularization of the face. In combination, this
enables unsupervised end-to-end training of our networks.
2D facial landmark locations can be optionally provided to
add a surrogate loss for faster convergence and improved
reconstructions, see Sec. 6. Note, both scenarios require no
supervision of the semantic parameters. After training, the
encoder part of the network enables regression of a dense
face model and illumination from a single monocular image,
without requiring any other input, such as landmarks.

4 SEMANTIC CODE VECTOR

The semantic code vector x € R?57 parameterizes the facial
expression § € R%4, shape v € R, skin reflectance 3 € R,
camera rotation T € SO(3) and translation t € R?, and the
scene illumination v € R?7 in a unified manner:

x=(a, 6,8, T, t ). )
—_—

face scene

In the following, we describe the parameters that are asso-
ciated with the employed face model. The parameters that
govern image formation are described in Sec. 5.

The face is represented as a manifold triangle mesh with
N = 24k vertices V = {v; € R3|1 < i < N}. The associated
vertex normals N = {n; € R3|1 < i < N} are computed
using a local one-ring neighborhood. The spatial embedding
V is parameterized by an affine face model:

V=V(a,d)=A, +E,a+E.J . )

Note that, by abuse of notation, here we represent the point-
set V as 3N-dimensional vector. Here, the average face
shape A, has been computed based on 200 (100 male, 100
female) high-quality face scans [5]. The linear PCA bases
E, € R3Vx80 and E, € R3N*64 gncode the modes with
the highest shape and expression variation, respectively.
We obtain the expression basis by applying PCA to the
combined set of blendshapes of [59] and [60], which have
been re-targeted to the face topology of [5] using deformation
transfer [61]. The PCA basis covers more than 99% of the
variance of the original blendshapes.

In addition to facial geometry, we also parameterize per-
vertex skin reflectance R = {r; € R3|1 <i < N} based on
an affine parametric model:

R=R(8)=A,+E. 3 . 3)

Here, the average skin reflectance A, has been computed
based on [5] and the orthogonal PCA basis E, € R3V*80
captures the modes of highest variation. Note, all basis
vectors are already scaled with the appropriate standard
deviations o}, such that EIE, = diag(--- , [02]?,- - -).

5 PARAMETRIC MODEL-BASED DECODER

Given a scene description in the form of a semantic code vec-
tor x, our parametric decoder generates a realistic synthetic
image of the corresponding face. Since our image formation
model is fully analytical and differentiable, we also imple-
ment an efficient backward pass that inverts image formation
via standard backpropagation. This enables unsupervised
end-to-end training of our network. The image formation
model that we employ is described in the following.
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Fig. 1. Our deep model-based face autoencoder enables unsupervised end-to-end learning of semantic parameters, such as pose, shape, expression,
skin reflectance and illumination. An optional landmark-based surrogate loss enables faster convergence and improved reconstruction results, see
Sec. 6. Both scenarios require no supervision of the semantic parameters during training.

Perspective Camera: We render realistic facial imagery
using a pinhole camera model under a full perspective
projection I : R? — R? that maps camera space coordinates
onto screen space coordinates. The position and orientation of
the camera in world space is given by a rigid transformation,
which we parameterize based on a rotation T € SO(3)
and a global translation t € R3. Hence, the functions
P ¢(v) = T (v—t)and Ilo®P ¢ (v) transform an arbitrary
point v from world space into camera space and further into
screen space, respectively.

Illumination Model: We represent scene illumination
using Spherical Harmonics (SH) [62]. Here, we assume
distant low-frequency illumination and a purely Lambertian
surface reflectance. Thus, we evaluate the radiosity at vertex
v; with surface normal n; and skin reflectance r; as follows:

B2
C(ri,ni,y) =r; - Z’Ybe(ni) :
b=1
The H;, : R3 — R are SH basis functions and the B2 = 9
coefficients v, € R? (B = 3 bands) parameterize colored
illumination using the red, green and blue channel.

Image Formation: We render realistic images of the face
using the presented camera and illumination model. To this
end, in the forward pass F, we compute the screen space
position u;(x) and associated pixel color c¢;(x) for each v;:

(4)

Fi(x) = [wi(x),c ({C)]T ER, )
u(x) = [Mod®r(Vi(e,d)) ,
ci(x) = C(Ri(B), Tny(e,d),7) .

Here, Tn,; transforms the world space normals into camera
space and  models illumination in camera space.

Backpropagation: To enable training, we implement a
backward pass that inverts image formation:

d(aa 57 ﬂa T7 t7 7)
This requires the computation of the gradients of the image
formation model (see Eq. (5)) with respect to the face and

scene parameters. For high efficiency during training, we
evaluate the gradients in a data-parallel manner, see Sec. 6.

c R5X257

B; (X) = (6)

6 Loss LAYER

We employ a robust dense photometric loss function that
enables efficient end-to-end training of our networks. The

loss is inspired by recent optimization-based approaches [4],
[8] and combines three terms:

Eloss(x) = wlandEland (X) + wphotoEphoto(x) + wregEreg(X)

data term

regularizer
@)

Here, we enforce sparse landmark alignment Ej.ng, dense
photometric alignment Ephoto and statistical plausibility Fireg
of the modeled faces. Note, Ejang is optional and implements
a surrogate loss that can be used to speed up convergence,
see Sec. 8. The binary weight wi,ng € {0,1} toggles this
constraint. The constant weights wpnoto = 1.92 and wyeg =
2.9 x 10~° balance the contributions of the objectives.

Dense Photometric Alignment: The goal of the encoder
is to predict model parameters that lead to a synthetic face
image that matches the provided monocular input image. To
this end, we employ dense photometric alignment, similar
to [4], on a per-vertex level using a robust ¢3 ;-norm:

) e

Here, 7 is an image of the training corpus and for
occlusion awareness we iterate over all visible vertices, which
we approximate as the set of front facing vertices V.

Sparse Landmark Alignment: In addition to dense
photometric alignment, we propose an optional surrogate
loss based on detected facial landmarks [63]. We use a subset
of 46 landmarks (out of 66), see Fig. 1. Given the subset
L = {(sj,¢j, k;)}j%, of detected 2D landmarks s; € R?,
with confidence ¢; € [0,1] (1 confident) and corresponding
model vertex index k; € {1, ..., N}, we enforce the projected
3D vertices to be close to the 2D detections:

2
Hz ’

ch i 09

Please note, this surrogate loss is optional. Our networks can
be trained fully unsupervised without supplying these sparse
constraints. After training, landmarks are never required.

Statistical Regularization: During training, we further
constrain the optimization problem using statistical regular-
ization [5] on the model parameters:

Zak+w52ﬁk+w526k .

Ephoto

®)

) .

Elar\d (9)

Ereg(x (10)
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Fig. 2. Quantitative evaluation of stochastic sampling on real data. Even
drastic sampling of ~ 2% of vertices only marginally reduces the quality
of the reconstruction results.

This constraint enforces plausible facial shape o, expression
0 and skin reflectance 3 by preferring values close to the
average (the basis of the linear face model is already scaled
by the standard deviations). The parameters wg = 1.7x 1073
and ws = 0.8 balance the importance of the terms. Note, we
do not regularize pose (T, t) and illumination =.

Backpropagation: To enable training via stochastic gra-
dient descent during backpropagation, the gradient of the
robust loss is passed backward to our model-based decoder
and is combined with B;(x) using the chain rule.

Data-parallel GPU Implementation: We implement
Eq. (8) in an iteratively reweighted fashion as follows:

1 1
Ephoto (x) = N Z a
SN2
where C; = ||Z(u;(x°4)) — ¢;(x°)||o. Here, x° is the
estimate for the code vector in the current iteration. Moreover,
since the computation of the number of visible vertices |V| is
expensive (since it would require an additional pass over the
vertices), here we approximate it with V. Our loss function
can now be represented as a sum of squares of individual
residuals, i.e., Eloss(x) = FT(x)F(x), where F : R?7 — RM
is a vector-valued function such that F(x) contains all the
M = |V|+46480+80+64 residuals of the energy (7). For
obtaining high performance, we parallelize the computation
of F to exploit the data-parallel computing power of modern
graphics cards, i.e., all elements of the vector F are computed
fully in parallel (each entry by a dedicated thread). In
the forward pass, we compute Ej,is = FZF using block
reductions. The local dot product in each block is computed
using shared memory and thread synchronization. Results
from different blocks are added on the CPU. In the backward
pass, the gradients of Ej,s can be calculated as
dEjpss(x
15%() =207 (x)F(x) ,

where J(x) € RM*257 js the Jacobian of F at x. J is
computed similarly to F by using one thread per entry of
the matrix. The dense matrix-vector multiplication can be
interpreted as computing a dot product for each element of
x, which is done similarly to the forward pass. The updated
mesh (geometry and albedo) for the next forward-backward
pass is computed based on a matrix-vector multiplication
and we use one thread per entry of the output vector.

2
. (11
2

T(u;(x)) — c;(x) ’

(12)

7 STOCHASTIC SAMPLING

Since our MoFA depends on several parameters (the weight-
ing of the individual energy terms, the relative learning rates

Sampling 5k Sampling 500

Full

Fig. 3. Qualitative comparison of MoFA with and without stochastic
sampling. Stochastic sampling of vertices lets us train networks much
faster with comparable results to networks trained using all vertices.

for different output parameters, and other network hyper-
parameters), finding a good configuration is a repetitive task
that requires several (user-guided) iterations. The bottleneck
of this procedure is the relatively long training time of the
network. In order to speed-up this process, we make use of
a stochastic sampling strategy. The basic idea is to randomly
sample a small subset of vertices for each input image and
then merely backpropagate the error for this small set. To
be more specific, we define the energy Epnoo in (7) for a
subset of sampled vertices S C V. Let S C S be the subset
of visible vertices. The loss is then defined as the sum of
model-vertex-specific energy terms Elihoto, ie,

1 )
Ephoto = 7q Z EIZ)hoto ’ (13)
=
where
Ehoto = 1 Z(wi(x)) = ¢i(x)[l2. (14)

We implement this energy similarly as done in (11). Using
this sampling strategy for training can be interpreted as
stochastic gradient descent not only over the set of images in
the training set, but also over the face vertices. Note that since
our semantically defined code vector has global influence, i.e.,
each vertex of the reconstruction influences all parameters of
the network through E;hoto, this is a valid sampling strategy.

Evaluation of the Stochastic Sampling: We quantita-
tively evaluate the sampling strategy (Fig. 2) for different
numbers of samples used while training. As can be seen,
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Ours (MoFA)

Illumination

Skin Reflectance

Fig. 4. Our approach enables the regression of high quality pose, shape,
expression, skin reflectance and illumination from just a single monocular
image (images from CelebA [64]).

Fig. 5. Sample images of our real world training corpus.

sampling fewer vertices only marginally reduces the quality
of the results, while enabling us to train the networks much
faster (time taken to train the network with 500, 2000,
5000 and all the vertex samples are 4, 5.2, 7.7 and 23.7
hours, respectively, using a GeForce TitanX graphics card).
Qualitative results are shown in Fig. 3, where it can be seen
that the resulting rendered images have similar visual quality.

8 RESULTS OF MOFA

In this section we demonstrate unsupervised learning of
our model-based autoencoder in-the-wild, and we show
that a surrogate loss during training improves accuracy. We
test encoders based on AlexNet [69] and VGG-Face [70],
where we modified the last fully connected layer to output
our 257 model parameters. The reported results have been
obtained using AlexNet [69] as encoder. Note that we do not
employ the surrogate loss and use all the vertices of the mesh
(i.e., no stochastic sampling) unless stated otherwise. After
training, the encoder regresses pose, shape, expression, skin
reflectance and illumination at once from a single image, see
Fig. 4. For training we use an image corpus (see Fig. 5), which
is a combination of four datasets: CelebA [64], LFW [68],
Facewarehouse [71], and 300-VW [65], [66], [67]. The corpus is
automatically annotated using facial landmark detection (see
Sec. 6) and cropped to a bounding box using Haar Cascade
Face Detection [72]. We prune frames with bad detections.
The crops are scaled to a resolution of 240 x 240 pixels. In
total, we collect 147k images, which we randomize and split
into 142k for training and 5k for evaluation. We train our
network using the Caffe [73] deep learning framework. For
efficiency, we implement our model-based decoder and the
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robust photometric loss in a single CUDA [74] layer. We
train our networks using AdaDelta and perform 200k batch
iterations (batch size of 5). The base learning rate is 0.1 for
all parameters, except for the Z-translation that was set to
0.0005. At test time, regressing all parameters using a TitanX
Pascal graphics card is fast and takes only 4ms (AlexNet)
or 14ms (VGG-Face). Training takes 13 hours (AlexNet) or
20 hours (VGG-Face). The encoder is initialized based on
the provided pre-trained weights. All weights in the last
fully connected layer are initialized to zero. This guarantees
that the initial prediction is the average face placed in the
middle of the screen and lit by ambient light, which is a good
initialization. Note, the ambient coefficients of our renderer
have an offset of 0.7 to guarantee that the scene is initially
lit. Next, we compare to state-of-the-art optimization- and
learning-based monocular reconstruction approaches, and
evaluate all components of our approach.

Comparison to Richardson et al. [12], [13]: We com-
pare our approach to the CNN-based iterative regressor
of Richardson et al. [12], [13]. Our results are compared
qualitatively (Fig. 6) and quantitatively (Fig. 15) to their
coarse regression network. Note, the refinement layer of
[13] is orthogonal to our approach. Unlike [12], [13], our
network is trained completely unsupervised on real images,
while they use a synthetic training corpus that lacks realistic
features. In contrast to [12], [13], we also regress colored
skin reflectance and illumination, which is critical for many
applications, e.g., relighting. Note, the grayscale reflectance
of [12], [13] is not regressed, but obtained via optimization.

Comparison to Tran et al. [14]: We compare qualitatively
(Fig. 7) to the CNN-based identity regression approach
of Tran et al. [14]. Our reconstructions are of visually
similar quality; however, we additionally obtain high quality
estimates of the facial expression and illumination. We also
performed a face verification test on LFW. Our approach
obtains an accuracy of 77%, which is higher than the
monocular 3DMM baseline [75] (75%). Tran et al. [14] report
an accuracy of 92%. Our approach is not designed for this
scenario, since it is trained unsupervised on in-the-wild
images. Tran et al. [14] require more supervision (photo
collection) to train their network.

Comparison to Thies et al. [4]: We compare our ap-
proach qualitatively (Fig. 8) and quantitatively (Fig. 15) to the
state-of-the-art optimization-based monocular reconstruction
approach of Thies et al. [4]. Our approach obtains similar
or even higher quality, while being orders of magnitude
faster (4ms vs. =~ 500ms). Note, while [4] tracks at real-
time after identity estimation, it requires half a second to fit
all parameters starting from the average model. While our
approach only requires face detection at test time, Thies et
al. [4] require detected landmarks.

Comparison to Garrido et al. [8]: We compare to our
own implementation (no detail refinement and shape cor-
rectives, photometric + landmark + regularization terms, 50
Gauss-Newton steps) of the high quality off-line monocular
reconstruction approach of [8], which requires landmarks
as input. Our approach obtains comparable quality, while
requiring no landmarks, see Fig. 9 and Fig. 15. Without sparse
constraints as input, optimization-based approaches often
get stuck in a local minimum.

We also compare to the monocular CNN-based approach
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Ours (MoFA) Richardson16 Ours (MoFA) Richardson16
Reconstruction Geometr Reconstruction Geometry

Reconstruction Geometry Reconstruction Geometry

Fig. 6. Comparison to Richardson et al. [12], [13] on 300-VW [65], [66], [67] (left) and LFW [68] (right). Our approach obtains higher reconstruction
quality and provides estimates of colored reflectance and illumination. Note, in [12], [13] the grayscale reflectance is not regressed but obtained via
optimization. We on the other hand regress all parameters (including reflectance) at once.

Ours (MoFA)

Ours (MoFA) Tran16 Input Color Albedo Shaded Jackson17
Input Reflectance Geometry Reflectance Geometry

©0 00

Fig. 7. Comparison to Tran et al. [14] on LFW [68]. Our approach obtains
visually similar quality. Here, we show the full face model, but training
only uses the frontal part (cf. Fig 1, right).

Fig. 10. Comparison to Jackson et al. [45]. Our approach obtains higher
quality reconstructions while also estimating the reflectance and incident
scene illumination.

Ours (MoFA) Thies16

Reconstruction Geometry Reconstruction ~ Geometry
Ours (MoFA)

AlexNet VGG-Face
Input Reconstruction Geometry Reconstruction Geometry

Fig. 11. We evaluate different encoders in combination with our model-

based decoder. Overall, VGG-Face [70] leads to slightly better results
than AlexNet [69], though the results are comparable.

SE&

Fig. 8. Comparison to the monocular reconstruction approach of [4] on
CelebA [64]. Our approach obtains similar or higher quality, while being . . .
orders of magnitude faster (4ms vs. ~ 500ms). of Jackson et al. [45] (Fig. 10). Our approach obtains qualita-

tively better alignments and higher quality results.

Evaluation of Different Encoders: We evaluate the
impact of different encoders. VGG-Face [70] leads to slightly
Garrido16 Garrido16 better results than AlexNet [69], see Fig. 11. On average,
(w/ landmarks)  (w/o landmarks) VGG-Face [70] has a slightly lower landmark (4.9 pixels
; vs. 5.3 pixels) and photometric error (0.073 vs. 0.075, color

distance in RGB space, each channel in [0, 1]), see Fig. 12.

Quantitative Evaluation of Unsupervised Training:
Unsupervised training decreases the dense photometric and
landmark error (on a validation set of 5k real images), even
when landmark alignment is not part of the loss function, see
Fig. 12. The landmark error is computed based on 46 detected
landmarks [63]. Training with our surrogate loss improves
landmark alignment (AlexNet: 3.7 pixels vs. 5.3 pixels, VGG-
Face: 3.4 pixels vs. 4.9) and leads to a similar photometric
error (AlexNet: 0.078 vs. 0.075, VGG-Face: 0.078 vs. 0.073,
Fig. 9. We compare to' our implementation of the high qya]ity off-Iipe color distance in RGB space, each channel in [0’ 1]). We also

monocular reconstruction approach of [8]. We obtain similar quality .

without requiring landmarks as input. Without landmarks, [8] often gets evaluate the influence of our landmark-based surrogate loss
stuck in a local minimum. qualitatively, see Fig. 13. Training with landmarks helps
to improve robustness to occlusions and the quality of

Input Ours (MoFA)
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Fig. 12. Quantitative evaluation of MoFA on real data: Both landmark
and photometric error are decreased during unsupervised training, even
though landmark alignment is not part of the loss function.

Ours (MoFA)

With Surrogate Task
Reconstruction Geometn

Fully Unsupervised
Reconstruction Geometr

Input

Fig. 13. We evaluate the influence of the proposed surrogate task. The
surrogate task leads to improved reconstruction quality and increases
robustness to occlusions and strong expressions.

the predicted expressions. Note that both scenarios do not
require landmarks at test time.

Quantitative Evaluation: We perform a ground truth
evaluation based on 5k rendered images with known pa-
rameters. Our model-based autoencoder (AlexNet, unsu-
pervised) is trained on a corpus of 100k synthetic images
with background augmentation (cf. Fig. 14). We measure the

Landmark Error
(in pixel)

Photometric Error

(RGB color space)
0.3 35

Geometry Error
(including pose, in mm)

===AlexNet
(unsupervised)

== AlexNet

20 AlexNet 30
25

(unsupervised) (unsupervised)

16
12

Iterations (in k) Iterations (in k) Iterations (in k)

0 100

Reconstruction Reconstruction

Reconstruction

Input

Input

Input

Fig. 14. Quantitative evaluation of MoFA on synthetic ground truth data:
Training decreases the geometric, photometric and landmark error.

TABLE 1
Quantitative evaluation on real data. Average Hausdorff distance to the
ground truth for different approaches.

Geometry | Photometric | Landmark
Ours (MoFA w/o surrog.) 1.9mm 0.065 5.0px
Ours (MoFA w/ surrog.) 1.7mm 0.068 3.2px
Garrido et al. [8] 1.4mm 0.052 2.6px

Garrido16 Ours (Mo'FA) Ours (MoFA)
unsupervised surrogate

POY YU Y|
oo e oo vl
7o ve w9l
Rooososs

1.83mm 1.38mm 1.50mm 1.12mm 134mm 1.26 mm

Tran16 Richardson16 Thies16

Mean error:

Fig. 15. Quantitative evaluation on Facewarehouse [71]: We obtain a low
error that is comparable to optimization-based approaches. For this test,
we trained our network using the intrinsics of the Kinect.

Input
%!

Ours (Model-based
%

Fig. 16. Our model-based autoencoder gives results of higher quality
than convolutional autoencoders. In addition, it provides access to dense
geometry, reflectance, and illumination.

geometric error as the point-to-point 3D distance (includ-
ing the estimated rotation, we compensate for translation
and isotropic scale) between the estimate and the ground
truth mesh. This error drops from 21.6mm to 4.5mm. The
photometric error in RGB space also decreases (0.33 to
0.05) and so does the landmark error (31.6 pixels to 3.9
pixels). Overall, we obtain good fits. We also performed
a quantitative comparison for 9 identities (180 images) on
Facewarehouse, see Table 1 and Fig. 15. Our approach obtains
low errors and on par with optimization-based techniques
in terms of Hausdorff distance, but it is much faster (4ms
vs. a few minutes) and requires no landmarks at test time.
The Hausdorff distance error metric does not penalize
misalignments in the tangent plane (surface sliding). To
also quantitatively evaluate the reconstructions in terms
of surface drift, we precompute a dense correspondence
map between the employed test set and our mesh topology
using a non-rigid registration approach. The correspondences
are computed based on two almost neutral meshes with a
slightly open mouth (to not erroneously bring the upper lip
of one topology into correspondence with the lower lip of
the other mesh). Based on this fixed set of correspondences,
we performed an additional evaluation of the surface-to-
surface error (including surface sliding) on the same test set,
see Table. 2. Our results are comparable to the very recent
coarse-level results of Tewari et al. [76] and Kim et al. [77].
Our refined results, see Sec. 9, outperform these two other
state-of-the-art learning-based techniques on the coarse level.
The results of Garrido et al. [8] are still slightly better, but
our approach runs orders of magnitude faster.
Comparison to Autoencoders and Learned Decoders:
We compare our model-based with a convolutional
autoencoder, as shown in Fig. 16. The autoencoder uses
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TABLE 2
Geometric error on 180 meshes of the FaceWarehouse [71] dataset. Surface-to-surface error (including sliding) based on a precomputed dense
correspondence map between the employed test set and our mesh topology.

Ours Others
MOoFA (surrogate) Opt Tewari et al. [76] (Fine) | Tewari et al. [76] (Coarse) | Kim etal. [77] | Garrido et al. [8] (Coarse)
Mean 2.19mm 1.87 mm 1.84 mm 2.03 mm 211 mm 1.59 mm
SD 0.54 mm 0.42mm 0.38 mm 0.52mm 0.46 mm 0.30 mm
Time 4ms 110 ms 4ms 4ms 4ms > 1min
Our model-based parametric decoder Learned convolutional decoder 9.1 Analysis-by'synthesis Optimization

e Ok

Fig. 17. Our model-based decoder provides higher fidelity than a learned
convolutional decoder in terms of image quality.

four 3 x 3 convolution layers (64, 96, 128, 256 channels),
a fully connected layer (257 outputs, same as number of
model parameters), and four 4 x 4 deconvolution layers
(128, 96, 64, 3 channels). Our model-based approach obtains
sharper reconstruction results and provides fine granular
semantic parameters, allowing access to dense geometry,
reflectance and illumination, see Fig. 16 (middle). Explicit
disentanglement [19], [20] of a convolutional autoencoder
requires labeled ground truth data. We also compare to
image formation based on a trained decoder. To this end,
we train the decoder (similar parameters as above) based
on synthetic imagery generated by our model to learn the
parameter-to-image mapping. Our model-based decoder
obtains renderings of higher fidelity compared to the learned
decoder, see Fig. 17.

9 OPTIMIZATION-BASED REFINEMENT

Similar to other data-driven techniques, neural networks
have a limited capacity and might not generalize well to
inputs outside the span of the employed training corpus.
Finding the right balance between under- and over-fitting is
a highly challenging problem on its own. Under-fitting leads
to a loss of reconstruction quality and over-smoothed results,
while over-fitting leads to bad generalization to unseen
images. On the other hand, standard optimization-based
approaches (without the guidance of discriminative detected
landmarks) often get stuck in a bad local minimum, which
leads to low reconstruction quality, as shown in Fig. 18. In this
section, we demonstrate that the combination of a coarse dis-
criminative estimate with an optimization-based analysis-by-
synthesis approach and a shading-based surface refinement
step can significantly improve the quality of the obtained
reconstructions. First, we describe a local minimization of the
energy Ejoss in Eq. (7) based on the Gauss-Newton method,
which leads to an improved reconstruction that remains
within the span of the employed model (Sec. 4). Moreover,
in order to explain fine-scale details on a wrinkle-level, we
(locally) optimize a modified energy function over per-vertex
displacements. These displacements are able to represent
faces that are outside the (restricted) model-subspace.

Since our trained network has limited capacity, it has to
trade-off the quality of individual reconstructions in order to
work on a diverse range of images. We show that running an
analysis-by-synthesis optimizer on the output of MoFA can
significantly improve the results. Our optimizer minimizes
the energy Fjoss in (7) as used to train our network. Starting
from the MoFA output as initialization, we run Gauss-
Newton optimization. Since the Gauss-Newton method
requires the energy to be represented as a sum of squares,
we implement our photometric term in (8) as explained in
(11). Additionally, we have implemented our optimizer in a
data-parallel fashion on the GPU, as explained next.
Data-parallel GPU Implementation: Our face recon-
struction energy is in a general non-linear least-squares form:

x* = argmin Ej(x), where (15)

Eioss(x)=Y_ (Fi(x))” .

i

(16)

Thus, we find the (local) optimum x* using the Gauss-
Newton algorithm. In each iteration step, we linearize the
problem based on Taylor expansion and solve the resulting
normal equations:

JT35 =JTF . (17)
J and F are the same as defined in Sec. 6 and are computed in
the same manner. J is the optimal update of the parameters.
We use a data-parallel implementation [78] of dense matrix-
matrix and matrix-vector multiplication to compute the
system matrix J7J and right hand side J'F of Eq. (17),
respectively. Afterwards, we copy the resulting small linear
system to the CPU and solve the system via Cholesky
factorization to compute the optimal update §. We iterate
this process for 5 Gauss-Newton steps. The runtime to obtain
our final reconstructions (network inference + optimizer) is
110 ms for one image, orders of magnitude faster compared
to a few mins per image for [8].
Results: The combination of our discriminative approach
with this analysis-by-synthesis fitting strategy (referred to
s “Opt”) leads to higher quality results, as shown in
Figs. 18, 20, 21 and Table 2. Purely optimization-based
approaches are highly sensitive to the initialization and
often fall into local minima in the absence of the landmark
alignment term. The parameter regression result of MoFA
provides a good initialization that can reliably be refined
by the local optimizer such that good reconstructions can
be obtained even without landmarks, cf. Fig. 18. Note, all
results obtained with the optimizer other than Fig. 18 use
our MoFA network with the surrogate loss and the landmark
alignment term for higher quality results. The weights used
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Fig. 18. Qualitative comparison between MoFA and MoFA with analysis-by-synthesis optimization (Opt) without the landmark term. Opt improves the
MoFA estimates while Garrido et al. [8], which starts from a neutral initialization (second column), often ends up in local minima in the absence of
landmarks. Opt, when starting from a neutral initialization also fails to estimate plausible reconstructions.

Booth17

Booth17 Ours (Opt)

Input

Ours (Opt) Input

! M
Fig. 19. Comparison between Opt and the approach by Booth et al. [23],
which learns an in-the-wild texture model from images to improve the
reconstruction of geometry. We obtain similar or better quality results
only using the reflectance model of [5].

Ours (Opt)
Color Albedo

e
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Fig. 20. MoFA with analysis-by-synthesis optimization allows for high-
quality geometry and appearance reconstructions.

Input
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for the optimizer are wppoto = 0.44, wreg = 0.01, wg = 0.11,
ws = 0.01. We have found that using only 5 Gauss-Newton
iterations leads to significant improvements over MoFA. In
Table 2 we provide quantitative results comparing various
methods, where it can be seen that Opt is able to reduce
the MoFA reconstruction error further. Although we still
are not able to outperform the results achieved by Garrido
et al. [8], we point out that [8] runs for 50 iterations (with
the landmark alignment term, starting from a neutral face),
thus requiring significantly more time. We compare our Opt
approach with the optimization-based approach of Booth et

Input

MoFA

Ours (Opt)

Ours (Refine)

Fig. 21. Qualitative comparison of MoFA with and without refinement.
While MoFA provides good reconstructions, the analysis-by-synthesis
optimization (Opt) significantly improves reconstruction quality. Shading-
based-refinement (Refine) further adds high-frequency details on the
surface, leading to high-fidelity reconstructions.

al. [23] (Fig. 19) where our approach obtains comparable or
better results. Our method also provides individual estimates
for the reflectance and illumination channels while [23] only
estimates the combined texture.

9.2 Shading-based Surface Refinement

While we obtain high quality reconstructions on in-the-wild
monocular images, our results are limited to the subspace
spanned by the underlying low-dimensional affine model
(Sec. 4). This limits the ability of our method to capture
fine-scale wrinkle-level details. Hence, we further refine the
output of Opt by allowing the mesh to go outside of this
restricted low-dimensional deformation space.

Recovering fine-scale surface structure is a long standing
and well researched problem in computer vision. Refinement
techniques for general surfaces [79], [80], [81], [82], [83] are
normally based on multi-view imagery. In the context of
facial detail estimation a variety of techniques exist. Data-
driven approaches [13], [44], [84] learn a mapping from the
input image to the fine-scale geometric structure. While these
approaches are in general fast, the recovered detail does
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Sela17

Ours (Refine) Richardson17

Fig. 22. Comparison between our method with shading-based surface
refinement (Refine), Richardson et al. [13] and Sela et al. [15]. In [13], only
the refined depth maps are estimated while in [15], an expensive non-rigid
template alignment step is needed to compute the final reconstructions.
We obtain similar or higher quality reconstructions by directly optimizing
for the surface details on the mesh.

shil4

Garrido16

Fig. 23. Comparison between our method with shading-based surface
refinement (Refine), Garrido et al. [8] and Shi et al. [88]. We obtain similar
results, while being significantly faster.

not necessarily match the input. Some approaches produce
details directly based on intensity variation [15], [85], [86].
While the obtained results look visually plausible, they are
not physically accurate. Optimization-based refinement tech-
niques [8], [87], [88] try to invert physical image formation
models. Although the recovered detail in general matches the
input, these approaches are computationally quite expensive,
normally requiring multiple minutes to process a single
frame. We leverage the data-parallel power of modern graph-
ics cards to accelerate optimization-based mesh refinement.

Consider the vertex positions of the low-dimensional
coarse reconstruction as V¢ = {v¢ € R3|1 < i < N}
We model out-of-subspace deformations using per-vertex
displacements D = {d; € R?|1 < i < N}, such that the final
vertex positions VI = {vI' = v¥ 4+ d;|1 < i < N} align
well to the input image Z. The optimal displacements are
determined as

D* = argmin E(D) (18)
D

where

Eref (D) = Ephoto (D)+wgradEgrad (D) + wregEreg(D) .

data term

(19)

regularizer

11

Dense Photometric Alignment: Similar to (8), we use a
dense photometric alignment term

1

Ephoto(D) = o z; HI(ui(D)) _ ci(D)HZ . (20

where V is the set of visible vertices (we approximate vertex
visibility by the set of front-facing vertices), and u;(D) and
c;(D) are the screen space position and color of vertex i,
respectively. They are computed analogously to Eq. (5). We
implement the photometric term in an iteratively reweighted
fashion, as in Eq. (11).

Gradient Alignment Term: We also consider high-
frequency shading details, similarly as proposed in [81]. More
precisely, we introduce a gradient alignment term that tries to
match the color gradients between the input and a synthetic
rendering of the model, as follows:

Egrad(D>:
2
312 Y eiD)—e D)~z D) -Z(w, )
i€V jEN;
(21)

where N is the one-ring neighborhood of vertex i. Finite
differences efficiently approximate image gradients based on
mesh gradients.

Regularization Term: Additionally, we use a Laplacian
regularizer on the displacements, as follows:

P05 | 2 @ -a) -

i€V jEN;

(22)

Note that Eq. (22) enforces smoothness of the reconstruc-
tions and stability of the optimizer.

Mesh Topology: We use the topology of [5] for both
our MoFA and for the analysis-by-synthesis optimization as
described in Sec. 9.1. In order to ensure numerical stability
for shading-based refinement, one has to take care of near-
degenerate mesh faces in the topology of [5]. To this end, we
remeshed the neutral face V! from the topology T'1 of [5]
to a face V4? represented by a more uniform topology T2.
The transformation of vertices of topology 11 to vertices of
topology T2 can be represented by the linear map L: Vil —
V2. After analysis-by-synthesis optimization (Sec. 9.1), we
transfer the results from topology 7’1 to our topology 72
using L, and then optimize over per-vertex displacements
using the topology T'2.

Optimization: Since the number of unknowns is much
larger than for the problem in Sec. 9.1, we use gradient
descent to optimize for the displacements. Similarly as before,
we approximate |V| in the individual energy terms using
N. The weights used in the energy term are wgaq = 1.0,
Wreg = 133.3. We use 250 iterations with a step-size of 0.008,
which we have found sufficient to achieve convergence.

Data-parallel GPU Implementation: We have also im-
plemented the per-vertex displacement optimization in a
data-parallel fashion on the GPU. Since the Jacobian matrix
here is much bigger and sparse, we do not use the approach
from Sec. 9.1. Instead, to compute the gradients, we launch
one dedicated th21'ead for each element of F, where thread
1 computes A The gradients for each variable coming

dD
from different threads are integrated using global memory
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g. 24. Limitations: Facial hair and occlusions are challenging to handle.

atomics. Using this optimized parallel implementation results
in a processing time of 450 ms for one image. Thus, the
overall time to obtain a high-quality reconstruction including
fine-scale details is 450 + 110 = 560 ms.

Results: We initialize our refinement approach with the
results from Opt. We show that our approach with refinement
("Refine”) recovers high-frequency geometry details from
images (Fig. 21). We compare to two high-quality face
reconstruction approaches [13], [15], as shown in Fig. 23. We
obtain details directly on the mesh in contrast to Richardson
et al. [13] that obtain only refined depth maps. Sela et al.
[15] reconstruct details on the mesh but at the cost of an
expensive non-rigid template alignment step. Our approach
obtains similar or higher quality while directly optimizing for
the details on the mesh topology. We additionally estimate
the reflectance and illumination channels. Our approach also
obtains similar results compared to [8] and [88]. However,
both [8] and [88] are orders of magnitude slower.

10 LIMITATIONS

We have demonstrated compelling monocular reconstruc-
tions using a novel model-based autoencoder that is trained
in an unsupervised manner. Similar to other regression
approaches, implausible reconstructions are possible with
MoFA when the regressed parameters are outside the span
of the training data. This can be alleviated by enlarging the
training corpus, which is easy to achieve in our unsupervised
setting. Since we employ a face model, MoFA reconstructions
are limited to the modeled subspace. Similar to optimization-
based approaches, strong occlusions, e.g., by facial hair or
external objects, cause our approach to fail, see Fig. 24.
Even with the refinement strategies, our approach can fail
in such cases. Unsupervised occlusion-aware training is
an interesting open research problem. Similar to related
approaches, strong head rotations are challenging. Since
we do not model the background, our reconstructions can
slightly shrink. Shrinking is discussed and addressed in [89].

11 CONCLUSION

We have presented a deep convolutional model-based face
autoencoder that can be trained in an unsupervised manner
and learns meaningful semantic parameters. Semantic mean-
ing in the code vector is enforced by a parametric model
that encodes variation along the pose, shape, expression,
skin reflectance and illumination dimensions. Our model-
based decoder is fully differentiable and allows end-to-end
learning of our network. We have additionally shown a
stochastic vertex sampling strategy in the loss function for
faster training, and analysis-by-synthesis optimization and

12

shape-from-shading refinement methods for high-fidelity
reconstruction. We believe that the fundamental technical
concepts of our approach go far beyond the context of
monocular face reconstruction and will inspire future work.
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