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Figure 1: We present an algorithm to reconstruct teeth (right) from photographs (left). The reconstructed teeth accurately fit the input data as
can be seen when overlaid over the input images (center).

Abstract

In recent years, sophisticated image-based reconstruction methods
for the human face have been developed. These methods capture
highly detailed static and dynamic geometry of the whole face, or
specific models of face regions, such as hair, eyes or eye lids. Un-
fortunately, image-based methods to capture the mouth cavity in
general, and the teeth in particular, have received very little attention.
The accurate rendering of teeth, however, is crucial for the realistic
display of facial expressions, and currently high quality face anima-
tions resort to tooth row models created by tedious manual work. In
dentistry, special intra-oral scanners for teeth were developed, but
they are invasive, expensive, cumbersome to use, and not readily
available. In this paper, we therefore present the first approach for
non-invasive reconstruction of an entire person-specific tooth row
from just a sparse set of photographs of the mouth region. The
basis of our approach is a new parametric tooth row prior learned
from high quality dental scans. A new model-based reconstruction
approach fits teeth to the photographs such that visible teeth are
accurately matched and occluded teeth plausibly synthesized. Our
approach seamlessly integrates into photogrammetric multi-camera
reconstruction setups for entire faces, but also enables high qual-
ity teeth modeling from normal uncalibrated photographs and even
short videos captured with a mobile phone.
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1 Introduction

Digital humans have become ubiquitous in our everyday lives, from
digital actors in visual effects and games to virtual patients in the
medical field. Over the past decades, both research and industry have
made tremendous progress when it comes to the creation of digital
faces, mostly focusing on appearance, shape and deformation of skin.
More recently, some work has emerged which also targets other
facial features, such as the eyes and facial hair. However, capturing
the mouth cavity in general, and teeth in particular, has only received
very little attention so far. Teeth contribute substantially to the
appearance of a face, and as can be seen from Fig. 11, expressions
may convey a very different intent if teeth are not explicitly modeled.
Furthermore, teeth can be an invaluable cue for rigid head pose
estimation and are essential for physical simulation, where they
serve as a collision boundary. In addition, in medical dentistry,
digital teeth models have long become a central asset, since they
allow to virtually plan a patient’s procedure.

Not surprisingly, most of the effort to capture teeth stems from the
medical dental field. While acquired with plaster-cast imprints in
the past, more and more intra-oral scanners are making their way
into clinics. While these devices can capture the shape of the teeth at
high quality, the capture procedure is very invasive and the devices
themselves are costly and not readily available. Minimally invasive
systems such as photogrammetric camera rigs, which have become
the de facto standard for facial capture, have so far not been able
to faithfully reconstruct the teeth at high quality. This is mainly
due to the complex appearance properties of teeth. Teeth are both
extremely specular due to the translucent enamel coating and highly
diffuse due to the underlying dentine, both of which exhibit strong
subsurface scattering. Consequently, teeth have only few visible
features, the strongest being the boundary between individual teeth,
which is not even a feature on the surface, thus reconstructing teeth
using photogrammetric approaches is very challenging. On the
upside, teeth are rigid and their shape variation from subject to
subject is manageable, and as such teeth render themselves well
to statistical modeling. Camera-based reconstruction of the mouth
interior is further complicated by non-trivial occlusions. It is often
hard for people to open the mouth sufficiently wide without the use
of dedicated lip spreading devices, and even then the entire mouth
cavity is typically not visible from a single pose.

In this paper, we therefore propose the first method for non-invasive
reconstruction of a detailed person-specific geometric model of an
entire tooth row from a sparse set of normal photographs of the
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mouth region. In these images, the person can make natural mouth
expressions, without the requirement to uncomfortably spread the
mouth with mechanical support. Our algorithm is based on several
contributions. First, we contribute a new parametric prior model
of an entire tooth row that is learned from a digitized database of
high-quality plaster casts. This tooth model encodes the local shape
variation of each individual tooth, the pose variation of each tooth
within the entire tooth row, as well as the global position and scale
of a tooth row. It also encodes prior distributions of the model pa-
rameters. Second, we contribute a new image-based approach that
reconstructs a person-specific tooth row, which matches the visible
teeth in the input images and synthesizes plausible geometry for
partially occluded and completely hidden teeth on the basis of the
prior model. Our algorithm only requires minimal user interaction
and can operate on a set of individual, uncalibrated images, making
teeth capture as easy and convenient as taking a few pictures or even
a short video clip recorded with a standard mobile phone. Further-
more, our method naturally extends traditional photogrammetric
face capture systems, increasing the quality of digital face scanning.

2 Related Work

Capturing the face, and teeth in particular, has been a topic of interest
in both digital media for entertainment as well as medical dentistry.
In the following we highlight related work in both fields.

Face Capture for Digital Media. Nowadays, photo-real digital
characters [Alexander et al. 2009; Alexander et al. 2013] are ex-
tensively used in digital media production, i.e. as virtual actors in
movies and games, or avatars in virtual reality or telepresence appli-
cations. Realistic rendering of animated human heads is of particular
importance. In the past, graphics and vision research developed so-
phisticated methods to reconstruct shape and appearance models of
static and dynamic human heads. Current state-of-the-art approaches
allow to capture facial geometry [Beeler et al. 2010; Ghosh et al.
2011] and the skin’s reflectance properties [Weyrich et al. 2006] in
high detail based on photogrammetric approaches with controlled
multi-camera and light setups. Using similar capture setups, even
dynamic face geometry [Beeler et al. 2011; Valgaerts et al. 2012]
and up-to micro-scale skin deformations [Nagano et al. 2015] can
be captured. Some methods also work on monocular video [Garrido
et al. 2013; Suwajanakorn et al. 2014; Shi et al. 2014; Wu et al.
2016], and in real-time [Cao et al. 2014; Cao et al. 2015]. Other
works developed dedicated image-based methods to reconstruct head
regions that are hard to capture with the aforementioned setups, such
as the moving eyelids [Bermano et al. 2015], the eyeball [Bérard
et al. 2014], or hair [Beeler et al. 2012; Echevarria et al. 2014; Hu
et al. 2015]. In combination, these approaches enable capturing high
quality models of almost all directly visible parts of a head. How-
ever, reconstruction of one important face region that is essential
for realistic rendering has been largely neglected so far, the mouth
interior. Especially, rendering a realistic tooth row is crucial for
believable animation of the mouth region. Some works reconstruct
parts of the mouth interior, such as the tongue or palate surface using
sophisticated sensor modalities like MRI [Hewer et al. 2014; Hewer
et al. 2015]. A much more practical image-based reconstruction
of the mouth interior in general, and the tooth row in particular, is
highly challenging due to non-trivial self occlusions, drastic light-
ing changes in the mouth interior, and complex material properties,
such as specularities and subsurface scattering. Up to now, there is
no passive photogrammetric approach for reconstructing detailed
actor-specific tooth rows, and in most practical animation settings,
the mouth interior is modeled by artists in a tedious manual process.

Recently, methods for face reenactment and face replacement in
monocular video were proposed [Dale et al. 2011; Garrido et al.

2015; Suwajanakorn et al. 2015]. These often employ some form
of parametric face model, but are challenged by their inability to
reconstruct a tooth row which would greatly facilitate mouth re-
rendering. Some methods resort to image-based retrieval strategies
to resynthesize the mouth from similar video frames or a dedicated
image-database [Dale et al. 2011; Garrido et al. 2014; Kawai et al.
2014; Suwajanakorn et al. 2015; Kim et al. 2015; Thies et al. 2016],
which often leads to ghosting and temporal aliasing artifacts. The
virtual dubbing method by Garrido et al. [2015] and the real-time
RGB-D face reenactment by Thies et al. [2015] resort to a generic
tooth row model aligned with a blendshape face. Ichim et al. [2015]
also use a generic tooth row model for reconstructing computer game
avatars from multi-view imagery. This yields plausible re-rendering
results, but the true person-specific mouth appearance, in particular
under extreme facial expressions, is not reproduced.

All these methods would profit from our method’s ability to recon-
struct personalized high-quality teeth from a few images or a short
video clip.

Tooth Reconstruction in Medical Dentistry. Reconstruction of
individual teeth plays an important role in dentistry to identify medi-
cal problems and plan surgical procedures such as tooth restoration.
Under these controlled conditions, more invasive approaches can
be afforded. Models of a patient’s teeth are frequently created from
plaster cast imprints, which are digitized using a laser scanner, or
extracted from CT recordings [Omachi et al. 2007; Yanagisawa et al.
2014]. Abdelmunim et al. [2011] has build a database of individual
teeth from such data and Binh Huy et al. [2009] has proposed an
interactive approach for segmentation of upper and lower teeth from
CT data. These methods yield high-quality models, but are time
consuming, expensive, and may not be without health risks through
radiation. New intra-oral scanners, such as the 3MTM True Definition
scanner, the iTero scanner and the 3Shape TRIOS R© pod scanner
simplify individual tooth scanning1. They all use variants of active
structured light scanning. Unfortunately, they are highly expensive
and are only available to medical experts.

Sadly, due to the aforementioned non-trivial occlusions in the mouth
interior and the difficult appearance properties of teeth, camera-
based photogrammetric reconstruction, even of individual teeth, is
very challenging. Teeth are featureless in general (except for a few
occlusion boundaries and creases), and they are highly specular and
exhibit strong subsurface scattering. Some previous work tried to
exploit these reflectance properties by using variants of shape-from-
shading [Carter et al. 2010; Farag et al. 2013; Mostafa et al. 2014].
These methods are still challenged by occlusions and often capture
incomplete medium-quality models of a single tooth or the occlusal
(i.e. biting) surface. A different category of approaches use contour
data in combination with a small set of feature points to reconstruct
a single tooth’s occlusal surface [Zheng et al. 2011]. High-quality
reconstruction of a complete teeth row, from just image data, has yet
to be demonstrated.

To alleviate the problem of incomplete tooth reconstruction (due to
occlusions), statistical models that represent shape variation of indi-
vidual teeth in a low-dimensional subspace were studied [Mehl et al.
2005], inspired by similar models of faces [Blanz and Vetter 1999].
Some image-based reconstruction approaches using parametric mod-
els employ shading cues and adapted reflectance models [Carter et al.
2010; Farag et al. 2013; Mostafa et al. 2014], others expect scan
point clouds as input [Munim et al. 2007]. A closed form solution
for reconstruction has also been proposed [El Munim and Farag
2007]. Statistical models can also predict the original shape of a
damaged tooth and thus be used for tooth restoration and inlay recon-
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struction [Blanz et al. 2004; Mehl and Blanz 2005; Buchaillard et al.
2007], again for a single tooth. The use of a statistical model for an
entire tooth row was shown by Farag et al. [2013] in their statistical
shape-from-shading approach, however their method requires a very
specific oral cavity input image that must be taken from inside the
mouth, which is far more invasive than the external hand-held photos
that our method can operate on. We present the first statistical tooth
model that encodes global and local variation in tooth shape and
position in a unified framework, allowing to reconstruct plausible
teeth from extra-oral imagery.

All previous approaches share one or more of the following three
limitations: (1) they are invasive and unpleasant for the patient; (2)
capturing is a tedious, expensive, and time-consuming process that
may require expert knowledge; and (3) reconstruction is limited to a
single tooth. In this paper, we propose the first end-to-end approach
to reconstruct detailed geometric models of all teeth in an entire row
(upper and lower tooth set) from normal photographs of the mouth
region. Our versatile and easy method opens up new possibilities in
face capture for media production, and could enable novel means of
doctor-patient communication in medical fields.

3 Teeth Prior Model

We wish to reconstruct teeth given sparse image data with large
occlusions, which can be made tractable with a statistical teeth prior.
To this end, in this section, we define a parametric model of teeth
and train a prior on the model, given 3D data from real subjects. Our
model can be used later on to fit to image data and recover complete
upper and lower tooth rows, even under occlusions.

Humans typically have 32 individual teeth (28 if wisdom teeth are
removed), separated into two rows (top and bottom) with basic
symmetry. The teeth are divided into four categories: incisors,
canines, premolars and molars, as illustrated in Fig. 2. We wish
to define a parametric model of the teeth that encodes 1 - the local
shape variation of each individual tooth, 2 - the pose variation of
each tooth within a row of teeth, and 3 - the global position and
scale of a row of teeth. Furthermore, we wish to learn a prior on the
parameters of the model given a set of high-quality 3D teeth scans
from dentistry. In the following, we first describe how we create a
teeth database from the dentistry data (Section 3.1), then provide
the definition of the teeth model (Section 3.2), and finally train the
model to learn a prior for fitting teeth to new subjects, given the teeth
database (Section 3.3). Throughout, we will describe the process for
only the top row of teeth, as the bottom row is completely analogous.

Figure 2: Human teeth are divided into four main categories: in-
cisors, canines, premolars and molars. We manually create a 3D
template mesh for each category.

3.1 Data Preparation

To build a teeth database we obtained high resolution plaster cast
3D scans of 86 different teeth rows from the field of medical den-
tistry, with a mixture of upper and lower teeth. A subset of the
scans are shown in Fig. 3. While the scans contain detailed tooth

geometry, they also contain the surrounding gums and are not in
correspondence across subjects. Furthermore, there is no semantic
segmentation of the meshes into individual teeth.
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Figure 3: We obtain a set of high resolution 3D scans for training
a teeth model, however the teeth are not segmented nor are they in
correspondence across subjects.

Teeth Templates. In order to build and train a model, we need a
teeth database with separate per-tooth geometry, which is in corre-
spondence across subjects. We start by artistically creating a tooth
template mesh. Since the four categories of teeth are quite different
in shape, we create four separate template meshes (see Fig. 2). For
completeness, we model the teeth all the way to the roots.

Template Fitting. We now wish to fit instances of the teeth tem-
plate meshes to the individual teeth in the plaster cast scans. This
will simultaneously solve the segmentation problem and place the
teeth in vertex correspondence across subjects. We devise a semi-
automatic template fitting approach. First, a user defines a segmenta-
tion contour for each tooth by clicking a few points at the inter-tooth
boundaries and the boundaries between teeth and gums. This is
illustrated in Fig. 4.a, where the contour for the left incisor is high-
lighted in purple and the other contours are shown in green. The
segmentation contours are computed automatically by following
high curvature paths between the selected points. In addition, the
user selects a few predefined landmarks per tooth (three for incisors
and canines, and five for premolars and molars), which will guide
the registration and seed the segmentation. Fig. 4.a shows the land-
marks for one of the incisors in red. Segmentation is performed by
flood-filling from the selected landmarks until the segmentation con-
tours are reached (Fig. 4.b). Finally, for each tooth the appropriate
template mesh is first rigidly aligned to the tooth given the selected
landmarks, and then non-rigidly deformed to tightly fit the seg-
mented tooth region using iterative Laplacian deformation [Sorkine
et al. 2004], with soft vertex constraints computed as the closest
surface point along the normal direction in each iteration (Fig. 4.c).
Once registered, we additionally compute a mask indicating which
part of the template corresponds to the segmented tooth, and also
mark the line of vertices corresponding to the gum boundary on
the aligned template. Since the remainder of the template has just
been deformed as rigidly as possible, we will not consider it when
computing our teeth prior.

The result after fitting to all scans is a database of tooth rows with
per-tooth mesh correspondence. Note that although several of the
steps above required manual interactions, building the database is a
one-time investment.

3.2 Parametric Teeth Model

We now describe a parametric model that defines a row of teeth.
Since we plan to fit this model to new subjects it is important that our
model can account for the variation of local shape and arrangements
of teeth. At the same time, we expect that when fitting later, several
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Figure 4: We align the template meshes to the teeth scans by seg-
menting the individual teeth and then non-rigidly deforming a tem-
plate to each tooth. (a) shows the user interaction which generates
the segmentation in (b). The final fitted templates shown in (c)
closely match the input scans as can be seen in the zoom-in (d).

teeth will be at least partially occluded, and so the model must also
be able to plausibly fill in under-constrained regions. For these
reasons, the model is defined for a row of teeth and we separate the
global parameters that define the general shape of a row from the
local parameters that define the local placement and shape of each
tooth.

Mathematically speaking, the model encodes the deviation in shape
and pose from a canonical tooth row, which is computed as the mean
of the database, shown in Fig. 5. Specifically, for every tooth τ , the
canonical parameters include the average shape per tooth Scτ as well
as the average pose of the tooth T cτ in the tooth row. In addition, we
compute a shape-subspace Bτ per tooth that encodes its variation
in shape. These properties are extracted from our teeth database
as described in Section 3.3 and remain invariant during fitting later
on. Thus, the degrees of freedom during fitting are parametrized by
the shape coefficients aτ as well as a rigid transformation matrix
Tτ that encodes the relative pose variation per tooth. In addition,
we include global parameters that affect the teeth row as a whole,
namely a rigid transformation T as well as anisotropic scaling along
all axes Φ. With these parameters, the tooth row model is evaluated
for each tooth τ as follows

Zτ = T Φ Tτ T
c
τ

Scτ +

|Bτ |∑
i

aiτBiτ

 , (1)

where Zτ is the final shape and pose reconstruction of a synthesized
tooth in the row, under the model parameters {T,Φ, Tτ ,aτ}.

3.3 Teeth Prior Training

Evaluating the model defined in Eq. 1 for a set of teeth provides
an instance of a tooth row that represents either the upper or lower
teeth for an individual. We now wish to train the model to obtain a
prior that will yield plausible reconstructions of teeth. Training is
performed on the teeth database computed in Section 3.1.

Tooth Row Model. The tooth row model is defined by the global
parameters T and Φ, as well as the canonical positions T cτ and local
transformations Tτ of each tooth. To train the tooth row model, we
require all the database tooth rows to be globally aligned (rigidly plus
anisotropic scale). To this end, we arbitrarily choose one tooth row as
a reference and align all other tooth rows to the reference by comput-
ing the rigid transformations and anisotropic scales. Once aligned,
we compute the mean tooth row by averaging the corresponding
vertices of every sample. We manually define the coordinate system
of the mean row by placing the origin between the two frontmost

incisors as follows: we set the y-axis to point in the direction from
the teeth roots to the crowns, the z-axis to point towards the mouth
cavity, and the x-axis to form a right-hand coordinate system with
the other axes.

We now again compute global rigid transformations and anisotropic
scale to align all samples to the mean tooth row. Unlike the rigid
transformation that accounts for global pose, the anisotropic scale
is due to anatomical differences in the population. Consequently,
we wish to quantify this variation such that it can be employed as
a prior during fitting later on. As it is reasonable to assume the
population follows a normal distribution, we model the prior on
global anisotropic scale by a multivariate Gaussian distributionNΦ

over the three degrees of freedom.

Now for an individual tooth τ , we rigidly align the corresponding
tooth template to the mean tooth to obtain the canonical tooth trans-
formations T cτ . We can then express the corresponding tooth samples
of the aligned database tooth rows in the local coordinate frame T cτ
of the tooth. The pose variation within this local coordinate frame
represents the remaining pose residual for this tooth type, which we
wish to quantify mathematically so that it can be employed as a prior
in the fitting step later on. Again, assuming a normal distribution of
our samples and a dependency of the individual variables in the rigid
transformation, we construct a multivariate Gaussian distribution
NTτ over the six degrees of freedom of the local transformation
(three for translation and three for rotation). Note that we learn a sep-
arate Gaussian distribution for the local transformation of each tooth.
Furthermore, we can now remove the local rigid transformations
and align all samples of a tooth class, such that the only residual left
is due to shape variation, which we will capture in our Local Shape
Model in the next paragraph.

Bottom Local Pose VariationFront

Sidex

z

Figure 5: The canonical tooth row shown on the left is computed
as the mean of our database. Aligning all samples of the database
globally to the canonical model, allows to quantify the remaining
local pose variation as shown on the right. The colored dots corre-
spond to the centers of the aligned database samples, and the large
ellipses visualize the computed Gaussian prior distribution at 2σ.

Local Shape Model. With all samples of a tooth type aligned as
described above, the only variation left is due to the shape which we
will capture through subspace analysis. We again assume the sam-
ples follow a normal distribution and employ Principal Component
Analysis (PCA) to determine the optimal subspace. PCA provides
the mean tooth shape, represented in our model as the canonical
shape Scτ , as well as an orthogonal shape basis Bτ . To avoid over-
fitting, we truncate the basis to include 95 percent of the energy,
which is approximately 4 components for incisors, 6 for canines,
and 10 for both premolars and molars, on average. For each tooth,
we also mark the ring of vertices corresponding to the average gum
line observed in the scans (Fig. 9).

As shown in Fig. 6, the two major eigenmodes are consistent across
teeth. The first one intuitively encodes variation in tooth length,
whereas the second one captures thickness changes. Higher modes
capture smaller shape changes such as local asymmetries, which
differ for different teeth classes. The computed eigenvalues define a
zero-mean normal distributionNaτ for each shape parameter.
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Figure 6: We show the major modes of our shape subspaces for an
incisor and a molar tooth. The modes are displayed at ±3σ. The
first two modes roughly correspond between all teeth, with the first
mode corresponding to length, and the second roughly to overall
thickness. Higher modes account for tooth specific shape details,
e.g. how pronounced the crown is in the case of a molar.

As a final step, we replace the teeth in the mean tooth row with the
canonical shapes {Scτ} by fitting the shape model to the individual
teeth, leading to the canonical tooth row shown in Fig. 5. The
resulting teeth prior is a parametric model that defines the position
and shape of a tooth row with both global and local control. In
addition, it provides a trained statistical prior on the variation of
model parameters based on a database of high-quality dentistry
scans.

4 Teeth Fitting

We now describe our image-based fitting method for reconstructing
teeth. Our approach involves automatic teeth boundary extraction
(Section 4.1), estimating the teeth model parameters from the bound-
aries (Section 4.2 and Section 4.3), fine-scale out-of-model defor-
mation to reconstruct exact teeth shape (Section 4.4), and finally
recovering teeth color textures from the imagery with an option to
incorporate 3D gums for visualization (Section 4.5).

4.1 Teeth Boundary Extraction

As discussed earlier, teeth exhibit very few visual features due to
their complex appearance properties. We found the most reliable
feature to be the silhouette, based on which we will formulate our
optimization as described in the following sections.

Teeth silhouettes could be obtained by manually labeling the input
imagery. While this is feasible and our algorithm can operate on such
data, it can quickly become very cumbersome with an increasing
number of images. In particular, for the use case of video-based
teeth reconstruction demonstrated in Section 5, manual annotation
is impractical.

Figure 7: To train the Boosted Edge Learning (BEL) detector, we
manually label a set of training images. We distinguish between
three classes, according to the occluding object: teeth (red), gums
(green), and lips (blue). Only teeth boundaries are real silhouettes
of at least one tooth.

Instead, we wish to automatically detect the silhouettes in the input
images. As shown in Fig. 7, we define three different types of teeth
boundaries based on the type of occlusion: teeth, gums and lips.

Note that we will only use the teeth and gum boundaries for fitting
the tooth row and a simple gum model. Explicitly differentiating
between gums and lips, however, is crucial to prevent erroneous
alignment of the tooth model gum lines to the lip boundaries. To
identify the boundaries, we employ the Boosted Edge Learning
(BEL) algorithm proposed by Dollár et al. [2006]. BEL is a general-
purpose supervised learning algorithm for edge and object boundary
detection that classifies image pixels as boundaries based on a large
set of generic fast features over a small image patch, including gra-
dients, histograms of filter responses, and Haar wavelets at different
scales. We train three separate detectors on a set of hand-labeled
input images, each corresponding to one particular tooth boundary.
A few examples of our training data are shown in Fig. 7. The output
of BEL is a likelihood map P∗ that encodes the probability that a
pixel belongs to an edge, as can be seen in Fig. 8.b.

a) Input Image c) Edgemap

d) Combined Edges

b) BEL Map

e) Filtered BEL Mapf) Overlay E

E

P

P **

Figure 8: Our goal is to automatically extract accurate teeth bound-
aries from the input images (a). A trained edge detector (BEL)
provides robust, but coarse estimates of teeth boundaries (b). Ac-
curate, but less robust edges are estimated using Gabor filters (c).
These two maps are complementary, since BEL is robust even if
teeth boundaries are very faint, such as in the upper right image,
and Gabor is accurate if there are strong edges, e.g. between upper
and lower teeth. The combined edge map (d) is used to refine the
BEL probability (e) to yield accurate tooth boundaries (f) uniquely
assigned to one of the three classes defined earlier; teeth (red), gums
(green), and lips (blue).

While BEL robustly detects the boundaries, the localization of the
edge exhibits some uncertainty, especially when training on larger
contours (we found 2px contours to provide adequate results). In
the example provided in Fig. 8, BEL merges upper and lower teeth
in places. Thus, we require an additional filtering step to reduce the
noise and sharpen the edges. To better localize the correct position
of an edge, we first convolve the original input images with a bank
of Gabor filters [Grigorescu et al. 2002] at different orientations to
obtain an edge map E∗ (Fig. 8.c) and an estimate of the orientation
of the edge ~O∗.

The edge detector performs very well where clear edges are visible
in the image, but oftentimes fails to detect edges between teeth that
are very smooth due to their appearance properties (see for example
the edge between the two teeth in the upper right corner in Fig. 8).
In such cases, the BEL output is superior and so we combine the
two as

E = E∗ + γNσ ∗ P∗, (2)

where Nσ ∗ P∗ is a smoothed version of the BEL map, and γ is a
scale factor, which we set to 1 for all our experiments. Similarly,
we also augment the edge orientation map ~O∗ with orientations esti-
mated from the smoothed BEL map. To further increase robustness,



this combined orientation map is then smoothed with a Gaussian
(σ = 1.4px, weighted by E) yielding ~O.

Based on the combined edge map E and smoothed orientation map
~O, the goal is now to diffuse the BEL probability map P∗ such that
the probabilities accumulate at the detected edges, thus improving
the silhouette detection. Diffusion takes place in the directions
orthogonal to the estimated orientation of the edge denoted by ~Ol,
where the specific direction is indicated by an up- or down-arrow,
respectively. The diffusion speed is governed by the gradient of
the edge map along the diffusion directions∇ ~Ol

E . Mathematically
speaking, the diffusion can be formulated as

Pk+1 = Pk + λ
(
∇ ~O↑
E · Pk~O↑

+∇ ~O↓
E · Pk~O↓

)
, (3)

starting with P0 = P∗ and where Pk~Ol
denotes the probabilities

along the diffusion directions. The diffused BEL probability map is
renormalized to the range [0,1] and thresholded using hysteresis to
further remove outliers, yielding the final probability map P shown
in Fig. 8.e. OverlayingP over the original image (see Fig. 8.f) shows
that our filtering step yields accurate teeth boundaries, which are
uniquely assigned to one of the three classes defined earlier; teeth
(red), gums (green), and lips (blue).

4.2 Teeth Model Parameter Estimation

We use the detected tooth and gum boundaries in the edge maps P
to find the parameters of our teeth model that best explain the input.
For convenience, we define the set of all parameters as:

X = {T,Φ} ∪ {Tτ}Nτ=1 ∪ {aτ}Nτ=1 . (4)

Here, N = 14 is the total number of teeth in a given row, either
upper or lower. The set consists of the global rigid transformation T ,
the global anisotropic scaling Φ, the local per-tooth rigid transform
Tτ and the local per-tooth shape coefficients aτ . We formulate the
problem of finding the optimal model parameters that best explain a
given set of input observations as a Maximum A Posteriori (MAP)
estimation problem in the unknown parameters X ∗. To this end, we
maximize the following posterior probability distribution:

X ∗ = argmax
X

p(X|P) = argmax
X

p(P|X )p(X ) . (5)

Here, p(P|X ) is the likelihood of observing the edge map P given
the teeth row parameterized byX . p(X ) is a prior on the distribution
of teeth. In the following, we describe in detail how we formulate
the teeth edge likelihood p(P|X ) and the teeth prior p(X ).

Teeth Edge Likelihood. The teeth edge likelihood p(P|X ) mea-
sures the probability that the edge map P has been generated by the
teeth with parameters X . We assume that the data points ci ∈ P
were generated by independent random processes and thus p(P|X )
is a product of per-sample point likelihoods:

p(P|X ) =

|P|∏
i=1

p(ci|X ) . (6)

Note that since we define the per-sample likelihoods over the input
edge-maps, we implicitly make use of the encoded visibility infor-
mation. We split the per-sample point likelihoods into a product of
two different likelihood functions:

p(ci|X ) = ppoint(ci|X ) · pplane(ci|X ). (7)

Here, ppoint models the distance and pplane the tangential noise of
the image formation process. This combination of point-to-point
with point-to-plane likelihood functions has been demonstrated to
exhibit good performance in other contexts, such as non-rigid regis-
tration [Zollhöfer et al. 2014]. We assume zero-mean and normal
distributed noise modelsN (0, σ2

point) andN (0, σ2
plane) for the two

likelihoods. The distance likelihood ppoint encodes the Euclidean
distance in the image domain between a detected contour point ci
and the projection ĉi of the corresponding silhouette point, and is
defined as

ppoint(ci|X ) ∝ exp

[
−wi

1

2

(
||ci − ĉi||2
σpoint

)2
]
. (8)

The weight wi specifies the confidence in the contour detection ci
and is given by P(ci), and σpoint =

√
500. The tangential likeli-

hood pplane tolerates sliding along the silhouette, while penalizing
deviation from the detected contour point ci along the projection of
the corresponding silhouette normal n̂i. The tangential likelihood is
given as

pplane(ci|X ) ∝ exp

[
−wi

1

2

(
〈n̂i, (ci − ĉi)〉

σplane

)2
]
, (9)

where 〈·, ·〉 denotes the inner product, the weight wi corresponds to
the confidence of the detected edge and σplane =

√
10.

Teeth Prior. Fitting the tooth row model to the set of detected
edges is a highly underconstrained inverse problem, since many
instances of the tooth row may satisfy the constraints given above.
In addition, the problem is highly non-linear in the unknown model
parameters X . We tackle both problems with a statistical prior
learned from the captured high-quality training data, as described
in Section 3. The prior guides the optimizer through the highly
complex energy landscape and allows discriminating between likely
and unlikely teeth configurations. The four types of model param-
eters {T,Φ, Tτ ,aτ} and all teeth are assumed to be statistically
independent, thus dividing the prior into:

p(X ) ∝ pscale(Φ) ·
N∏
τ=1

[
plocal(Tτ ) · pshape(aτ )

]
. (10)

We model the individual priors of pscale, plocal and pshape based on
multivariate normal distributions (please refer to Sec. 3.2 for further
details). Note, we do not use a prior on the global transformation T ,
since all poses are assumed to be equally likely.

Extension: Camera Parameter Estimation. For an uncalibrated
camera setup, instead of solving for a single global rigid trans-
formation T , we solve for the set of per-camera transformations
{Tν}Nνν=1, where Nν denotes the number of viewpoints. The in-
trinsics of the camera(s) are assumed to be fixed and calibrated in
advance. This can be considered a special case of rigid structure-
from-motion [Webb and Aggarwal 1982], where the structure is
regularized by the proposed teeth prior, which allows to accurately
and robustly calibrate the viewpoint positions at the same time as
optimizing for the model parameters.

4.3 Optimization

In the proposed MAP estimation problem, the model data (ĉi) that
corresponds to a sample point ci is a hidden variable. Therefore,
we alternate k times between computing model correspondences ĉi
for the detected edge points ci (both teeth and gum boundaries) and



optimizing for the model parameters. These two steps are iterated
until convergence or for a predefined number of iterations. The
convergence criterion is met if the change in the residual is lower
than a small threshold. This can be interpreted as a variant of the
Expectation Maximization (EM) algorithm [Dempster et al. 1977].

E-Step. To determine the correspondences, we project the visible
silhouette points and the gum line points of the teeth into the view-
points. The teeth are evaluated for the latest guess X k of the model
parameters from EM iteration k. For every detected contour point ci,
we find the best correspondence by finding the projected silhouette
point ĉi for the teeth contours (and analogously the projected gum
line point for gum contours) that minimizes

ĉi = argmin
ĉj

||ci − ĉj ||22 · exp

[
−
(
〈ni, n̂j〉
σangle

)2
]
, (11)

where ni is the image-space normal at the contour point ci and
σangle = 0.3. Intuitively, this equation finds the closest point with
similar orientation to the detected edge point.

M-Step. After updating the correspondences, we optimize for up-
dated model parameters X k+1 assuming the correspondences re-
main fixed. We tackle this optimization by minimizing the negative
log-likelihood as follows:

X k+1 = argmax
X

p(X|P) = argmin
X

[
− log p(X|P)

]
. (12)

Since the teeth edge likelihood and the teeth prior are governed by
normal distributions, the resulting optimization problem reduces to
a standard non-linear least-squares problem, which we solve using
the Gauss-Newton (GN) method. Since the optimization problem
is highly non-linear, a simultaneous optimization of all parameters
is unlikely to converge to the global optimum, especially if the
initialization is far from the detected input contours. To alleviate this
problem, we apply a progressive coarse-to-fine optimization strategy.
First we start optimizing only the global model parameters, namely
T and Φ. After a few iterations (10 for all performed experiments),
we add the local transformations Tτ to the parameter set. Finally,
the shape coefficients aτ are included in the parameter set and we
optimize the full model. Due to noise and outliers in the detected
edge maps, we also employ a robust correspondence filtering strategy
based on the median absolute deviation δi (see also Rousseeuw and
Lerow [1987]):

δi = ε ·median
j∈Bi

∣∣∣∣cj − ĉj
∣∣∣∣

1
. (13)

Here, Bi is the set of edge pixels captured by the same camera
and belonging to the same tooth as ci. The scalar ε = 1.4826 is a
theoretical correction factor. A detected edge pixel ci is flagged as
an outlier if

∣∣∣∣ĉi − ci
∣∣∣∣

1
> η · δi. In all our experiments, we use the

penalization threshold η = 2.5.

Initialization and Implementation. We need to start our highly
non-linear optimization from a reasonable initial guess X 0 of the
model parameters to succeed. Parameters are initialized to the mean
of their corresponding normal distribution. The only parameter
that is not governed by a normal distribution is the global pose T
of the model. To this end, we devise a lightweight and intuitive
approach to initialize T by asking the user to identify two teeth per
row in at least one viewpoint. Depending on the use case, more
viewpoints might be required (see Section 5). From the two strokes
and preselected vertices on the tooth model, we get four very rough
2D-3D correspondences which are sufficient to compute a rough

initial guess for T . Note that this guess might still be very inaccurate
as the user is allowed to draw the strokes freely on the teeth. We
thus refine the initialization by finding the closest points in the
edge map P to the two strokes and assigning them to the respective
teeth. We now run our optimization restricting the E-step to select
only correspondences from this set for the two teeth, which will
provide the final initial guess. This is the only manual step of our
pipeline, and the proposed method to identify two teeth per row
is fast, intuitive and can be conducted by non-technical operators
with no CG background, e.g. medical personnel, in a standard
image viewer. In practice, we found the gum line constraint is less
reliable than the tooth boundary constraint. Therefore, the gum line
constraint is drastically downweighted in the first EM iterations, and
only in the last iteration is treated equally with the tooth boundary
constraint.

4.4 Out-of-Model Deformation

The optimization will yield teeth geometry that matches the detected
silhouettes as closely as possible within the shape subspace defined
by our tooth model. Some teeth might have shapes that are slightly
outside of this subspace, which has been designed to only capture
the major tooth variation to serve as a robust prior. To overcome this
slight mismatch, we conclude tooth shape reconstruction with an
out-of-model deformation step. For each tooth contour point ci we
perform another E-Step to find corresponding vertices on the tooth
silhouette and compute the closest point along the ray through ci as a
target position for deforming the tooth out-of-model. Based on these
correspondences, we perform Laplacian deformation, while keeping
the root vertices fixed. The out-of-model deformation provides very
close fits to tooth edge maps.

4.5 Color and Gums

To produce compelling visual reproductions of the teeth, we addi-
tionally compute their color and incorporate the gums. Color is
computed per vertex from the input images, after segmenting the
teeth using color filtering. We filter the images conservatively to
avoid adding any skin color to the teeth. For every tooth that has
been partially colored, we solve Laplace’s equation on the surface
to smoothly fill in the rest. Teeth that are completely occluded are
colored as the average of their neighboring (partially visible) teeth.

We finalize the tooth row by fitting a generic 3D model of gums,
which makes the reconstruction more realistic and complete. Start-
ing with a template gum mesh created by an artist, we label the
edge-loops on the mesh that correspond to boundaries with the indi-
vidual teeth, as shown in Fig. 9.a. Then, given a reconstructed tooth
row we can use the average gum lines computed from the database in
Section 3.3 (Fig. 9.b) as constraints for an iterative non-rigid Lapla-
cian deformation scheme [Sorkine et al. 2004]. In each iteration,
correspondences are computed from the labeled gum vertices to the
closest corresponding tooth gum line point, which slowly deforms
the gums into position (Fig. 9.c). This approach has the advantage
that even if the gums are completely occluded (which is oftentimes
the case) we will reconstruct a plausible gum shape. But on the other
hand, if the gums are in fact visible we can use the gums component
of the filtered BEL Map P as constraints for fitting, which we show
for several results in Section 5.

5 Results

We demonstrate the applicability of the proposed method on three
different use cases, 1 - integration with an existing photogrammet-
ric face scanning system, 2 - reconstruction from an unstructured
set of uncalibrated input images, and 3 - progressive teeth recon-



a) Template b) Constraints c) Fit Gums

Figure 9: We complete the tooth row by fitting a generic gum tem-
plate (a), to either the detected gum line, when available, or other-
wise the computed average gum line per tooth (b), using a non-rigid
deformation scheme (c).

struction from handheld video capture. Finally, we also provide
evaluations of our method by comparing quantitatively to ground
truth teeth acquired using state-of-the-art intra-oral acquisition, com-
paring against a simple retrieval-based method, and evaluating the
effect of the training database size on reconstruction accuracy.

Calibrated Multi-View Capture. Passive photogrammetric face
capture has become widely used in several areas, including the
entertainment industry. These systems offer a fast and convenient
means to acquire the face geometry at high resolution using a set
of cameras. We demonstrate that the proposed method seamlessly
integrates into these systems without requiring any modification
of the existing hardware. To this end, we show integration into
the system proposed by Beeler et al. [2010], but other systems
would work just as well. Their system simultaneously captures a
set of eight calibrated viewpoints of the person to be scanned. In
a preprocessing step, we label 40 images randomly selected from
different viewpoints, which serve as input data to train the edge
detector (see Section 4.1). This training is a one-time upfront effort,
and no retraining is required for future subjects. When capturing a
new subject, the operator identifies two teeth per row in the frontal
two viewpoints to initialize the system, leading to a total of 8 strokes.

Fig. 10 and Fig. 1 show several captured subjects plus reconstructed
teeth. Most people tend to only expose their upper teeth when
smiling naturally. Fig. 11 shows the reconstructed teeth of one
person combined with a scan of her face, all computed from the
same eight input images. A nice feature of the proposed method is
that it can fit teeth rows to partially incomplete data. For example,
the molars are typically not visible, yet still our method produces
plausible teeth reconstructions. This capability is further explored
in Fig. 12, where we simulate missing teeth by manually removing
their detected silhouettes. As can be seen, the system succeeds at
suggesting plausible teeth, since it propagates model coefficients,
e.g. overall scale, from visible teeth as part of the optimization.

Uncalibrated Multi-View Capture. Since teeth are rigid, we do
not require that all viewpoints are captured simultaneously, but
instead can acquire them one by one. While taking longer than using
a rig such as in the previous use case, this approach has the advantage
that a single handheld camera is sufficient and the subjects can move
their lips to expose more of the teeth when taking an image from a
particular viewpoint. We employ a single Canon Rebel T5 Camera
with 60mm macro lens, on which we mount a flash. Flash and lens
are cross-polarized to reduce specularities and produce comparable
images as in the previous use case. This allows us to re-use the
same edge detector without re-training. We pre-calibrate the camera
intrinsics, which is again a one-time upfront effort only, required
once per camera. Unlike the previous use case, the extrinsics of the
viewpoints are unknown and thus we ask the operator to identify
two teeth per row and viewpoint for initialization. These can be
different teeth for every viewpoint, leading to a total of 4Nν input
strokes. Fig. 13 shows the estimated camera positions (right) as well
as the computed teeth model (center) overlaid over one of the 11

input image (left).

To evaluate the accuracy of our camera estimation results, one op-
tion would be to apply a structure-from-motion (SfM) algorithm
on the input images and compare to the resulting camera positions.
However, the input images are captured without requiring the actor
to hold the expression, which is completely suitable for our teeth
capture method, but will introduce additional errors in the SfM re-
sults. Therefore, we evaluate our camera estimation accuracy on one
of our calibrated multi-view datasets, simply by ignoring the camera
calibration during reconstruction. For a set of 8 images capturing
the face region from front, left, right and below at approximately 1
meter away, our estimated cameras contained an average positional
error of 4 cm and average rotation error of 2.1 degrees.

Progressive Reconstruction from Video. As a last use case, we
present the progressive reconstruction from input video captured
by a handheld device, such as an iPhone. Video has the advantage
that we can leverage thousands of viewpoints, which is great for
silhouette based reconstruction methods. While we could treat this
use case as a special case of uncalibrated multi-view capture, the re-
quirement to label every viewpoint would require several thousands
of user input strokes, which is not practical. Instead, we leverage
the temporal coherence of the video footage, which guarantees that
adjacent viewpoints exhibit only a small baseline. Therefore, we
can initialize a viewpoint with the extrinsic of the previous time step
and afterwards jointly optimize for camera and model parameters.
Therefore, user input is only required for a single frame, yielding
only 4 input strokes to reconstruct both upper and lower teeth.

While the strategy to re-optimize teeth and camera parameters for
every frame works, it is computationally expensive. We found
that the teeth are only refined slightly at every frame, and that co-
optimization is only required when viewpoints add substantially new
information. Therefore, we propose an adaptive scheme, that keeps
the teeth fixed and only optimizes camera parameters, as long as
the final residual of the optimization is below a given threshold. In
these cases, the current estimation of the teeth model matches the
observed data reasonably well. Once the model fails to sufficiently
explain the observed data for a given frame, we select Ñν viewpoints
from the already optimized cameras by sampling uniformly over
the solid angle covered by the views and refine the teeth model by
co-optimizing camera and model parameters. Then, we continue to
process the remaining views, again optimizing for camera parame-
ters only, until the residual exceeds the predefined threshold. Once
all frames have been optimized, we run a final co-optimization step
by again selecting Ñν viewpoints as representatives.

We found this approach produces accurate teeth reconstructions,
while requiring only very few co-optimizations (less than 10, com-
pared to thousands using the naı̈ve approach), providing a drastic
speed-up. Fig. 14 gives a quantitative illustration of the process.
The first estimate (blue curve) of the model, reconstruced from a
front view, is sufficient to track up to frame 173, where the residual
exceeds the preset threshold of 1.5 pixels for the first time. The
method then selects 10 views (red stars) to estimate an updated
model. The new model is already sufficient to track to all frames
(red curve). One more co-optimization step (yellow stars) produces
the final teeth model, which exhibits the lowest overall tracking
error (yellow curve). For illustration, we computed the residuals for
all frames to show the overall improvement. In practice, tracking
would take place in one go with progressively improved models.
The remaining residual is due to noise and inaccuracies in the edge
detection and the lack of expressive power of the model to exactly fit
the detected silhouettes. This last inaccuracy can be further reduced
using the out-of-model step described in Section 4.4. Fig. 15 shows
the result obtained by progressive tracking of a video acquired with



Figure 10: We reconstructed the teeth of several subjects captured in a multi-view photogrammetric system (8 cameras). Most people tend to
only expose their upper teeth, unless explicitly asked to show both upper and lower teeth as in the bottom row.



Figure 11: The proposed method can be seamlessly integrated into
existing facial capture setups, without the need to change any hard-
ware. Teeth are highly important for the perception of expressions.

Figure 12: A nice feature of our method is its capability to fit to
partial data. In this example, we manually removed the silhouettes
of 1, 2 and 4 frontal teeth to simulate such data. Our method is not
only robust, but also suggests plausible teeth.

a handheld device (iPhone 6). The video was captured outdoors
without special equipment, such as polarizers used in the previous
use cases. Therefore, the imagery is visually quite different, which
is why we retrain the edge detector on five frames of the video. Also,
we pre-calibrate the intrinsics of the device and undistort the images
before processing. The resulting teeth are very accurate, since our
method benefits from the large number of viewpoints that constrain
the silhouette based optimization.

Comparison with Retrieval-Based Teeth Fitting. The majority
of healthy people have the same number of teeth, arranged in the
same order with incisors in front followed by canines, premolars
and then molars. This apparent global similarity across subjects
might suggest that a simple retrieval-based method for finding the
most similar teeth row in the database is sufficient for estimating the
teeth of an unseen individual. However, the shape and structure of
teeth across subjects are in fact very unique (one reason why dental
records are used for person-identification in forensics), and thus a
retrieval-based method does not lead to accurate results. Given an
incredibly large database, the likelihood of finding a match with
acceptable error would increase, but creating such a database would
be impractical. Our statistical teeth row model can in a unified way
well-explain the individual local tooth variation as well as the global
variation of the whole teeth row. This enables a compact yet highly
expressive model that requires far fewer training samples than any
retrieval-based method for comparable accuracy. We demonstrate

Input Image (1/11) Reconstructed Teeth Recovered Camera Motion

Figure 13: For uncalibrated setups, our algorithm can jointly opti-
mize for shape (center) and camera parameters (right).
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Figure 14: For video data we propose a progressive reconstruction
scheme, where teeth parameters are kept fixed when solving for
camera extrinsics until the mean residual per detected edge point
is higher than a threshold (1.5px in this case). At that point, we
select a subset of already tracked cameras sampled uniformly based
on their viewing angle (stars). We then jointly optimize for teeth
and camera parameters to update the model and continue tracking.
Above, the model is updated three times (blue, red, yellow) - once at
the beginning, once after exceeding the threshold at frame 173, and
a final time after all frames have been processed. This approach is
both efficient and robust, as well as accurate, see Fig. 15.

this point in Fig. 16, where we compare our reconstruction to the
closest matching teeth row from our training database after optimiz-
ing for the global rigid transformation that best aligns the teeth to the
input images. This shows that a retrieval-based method cannot fit the
teeth well, in particular due to the limited size of the database, but
our model built from the same training data is visibly more accurate.

Quantitative Evaluation. Finally, we assess the accuracy of our
extra-oral teeth reconstruction technique based on 8 images with
ground-truth data acquired at a dental clinic using an intra-oral scan-
ner. Obviously, the two modalities have very different properties.
Where the intra-oral scanner provides highly accurate reconstruc-
tions, it is invasive and not easily accessible. Our proposed method
reconstructs teeth that closely match the ground-truth data within a
few millimeters of accuracy, as can be seen in Fig. 17, yet requires
only a few photographs from afar, which can be captured quickly
and easily.

In order to evaluate the robustness of our system, we further assess
the accuracy of our reconstruction while varying the size of the teeth
database that is used to train the teeth prior model. Table 1 shows
reconstruction errors for database sizes of 50, 40, 30, 20 and 10
training teeth rows. The reconstruction example is the same as in
Fig. 17, and the reported accuracy is the average Euclidean error
over all non-root vertices across all teeth. This evaluation shows that
our method is robust to varying database sizes as quality gracefully
degrades when the amount of training data is reduced.

Database Size 50 40 30 20 10
Average Error (mm) 0.86 0.93 0.95 0.97 1.05

Table 1: Our method is robust to the database size, as we show
by varying the amount of training data and computing the average
Euclidean error of the (non-root) teeth vertices for the reconstruction
example shown in Fig. 17.



Figure 15: We reconstructed the teeth from a short videoclip (1000 frames) captured with a handheld device (iPhone 6) outdoors. The
algorithm recovers both camera parameters and accurate teeth geometry by progressively processing the data.

Retrieval-Based Fitting Our Approach

Figure 16: We compare our model-based fitting method to retrieval-
based fitting, which finds the closest fitting teeth row from the
database. Here we clearly see that retrieval-based fitting cannot
accurately recover the teeth of an unseen individual.
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Figure 17: We assess the accuracy of the proposed approach by com-
paring the reconstructed teeth of a subject captured in the calibrated
multi-view setup (blue) with an intra-oral scan (orange). Since only
the frontmost teeth are visible, we rigidly align the two models using
the frontmost 6 teeth (incisors and canines). Our method is capable
of reconstructing the teeth within a few millimeters accuracy, from
purely extra-oral images.

Limitations and Future Work. Our approach is the first to re-
construct a personalized teeth model of high quality based on a
lightweight capture setup, but it still has several limitations. Our
model is based on a statistical prior and as such limited to the varia-
tion present in the database. Most inaccuracies are small thanks to
the out-of-model deformation step, but we typically miss some of
the high frequency details, such as sharp edges or creases. In one
case, shown in Fig. 18, our method was not able to faithfully recon-
struct a complete tooth, since the particular tooth shape is far outside
the prior. Still, our method can provide an indication of confidence
through the remaining per tooth residual, displayed on the right of
Fig. 18. This could be used to flag problematic teeth, which could
be remodeled and added to the training data to extend the expres-
siveness of the prior. Even though casually captured uncalibrated
photographs are handled, teeth have to be sufficiently exposed to
allow for reliable contour detection. As this is a silhouette based
method, more views provide significantly more constraints. Note,
unnatural mouth spreading with a mechanical support, as in some
previous methods, or intra-oral mirrors are not required, but could be
employed to increase the number of teeth that can be reconstructed.

Con�dence

Figure 18: The canine of this person has a shape far outside the
prior (left). While our method can not accurately reconstruct the
shape of such outliers, it provides a confidence measure (right) of
the reconstruction, using the remaining per-tooth residual. This can
be used to flag problematic teeth that require special attention.

The automatic silhouette detection requires teeth to be captured in
an environment that resembles the one it has been trained on. This
could be alleviated by training on a larger set with varying envi-
ronments. Currently, initialization of our model requires simple
manual interaction, which could easily be replaced by an automati-
cally trained tooth detector or augmenting a parametric face model
with a generic tooth row. The latter could also improve video-based
tooth reconstruction under fast motion.

In the future, additional constraints could be considered to improve
teeth reconstruction. Geometric matching of occlusal surfaces of
corresponding upper and lower teeth (in particular molars) or explicit
collision handling can provide valuable constraints. Also, shape-
from-specularity could be employed to acquire high-frequency geo-
metric detail and we would also like to estimate a more sophisticated
personalized tooth appearance model that captures the specularity
and subsurface scattering of teeth due to their two layer structure.
Additional parts of the mouth and mouth cavity, such as lips, the
tongue or the wall of the cavity could be captured. This not only
enables reconstruction of even more complete face models, but also
provides additional constraints to our teeth reconstruction approach,
such as collisions between teeth and lips. A more complex tooth row
prior model, for example one that uses Markov chains, could better
encode the relationship of neighboring teeth (or opposing teeth in
upper and lower rows). Finally, the reconstruction of teeth from a
single uncalibrated image, like a selfie, and the incremental recon-
struction, while providing live visual feedback, are still challenging
unsolved problems.

6 Conclusion

We proposed the first model-based approach for reconstructing a
personalized high-quality 3D teeth model, given just a sparse set



of (uncalibrated) images or a short monocular video sequence as
input. Unlike related approaches in the medical field, ours is non-
invasive and reconstructs a geometric model of the entire tooth
row including the gums from photographs captured from afar and
potentially simultaneously. To this end, we leverage the statistical
information of a novel parametric tooth prior learned from high-
quality 3D dental scans that models the global deformations of an
entire tooth row as well as the individual variation of each single
tooth. Fitting is based on a new optimization approach that leverages
the visual contour information in the images to accurately align the
model to photographs, where the teeth are visible, and also plausibly
synthesizes partially occluded teeth. Apart from a few input strokes
to identify two teeth, the proposed pipeline is fully automatic.

Our approach opens up new ways to reconstruct personalized teeth
at high quality and brings teeth reconstruction within reach of com-
modity use, without requiring expensive specialized equipment. We
believe that our versatile and easy-to-use approach will be useful in
medical dentistry for previsualization and to enable novel ways of
doctor-patient communication, as well as in the entertainment indus-
try, where the proposed method to reconstruct teeth and gum models
seamlessly integrates into existing photogrammetric multi-camera
setups for face capture.
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DOLLÁR, P., TU, Z., AND BELONGIE, S. 2006. Supervised
learning of edges and object boundaries. In IEEE CVPR, 1964–
1971.

ECHEVARRIA, J. I., BRADLEY, D., GUTIERREZ, D., AND BEELER,
T. 2014. Capturing and stylizing hair for 3d fabrication. ACM
Trans. Graphics (Proc. SIGGRAPH) 33, 4, 125:1–125:11.

EL MUNIM, H., AND FARAG, A. 2007. Shape representation and
registration using vector distance functions. In IEEE CVPR, 1–8.

FARAG, A., ELHABIAN, S., ABDELREHIM, A., ABOELMAATY,
W., FARMAN, A., AND TASMAN, D. 2013. Model-based human
teeth shape recovery from a single optical image with unknown il-
lumination. In Medical Computer Vision: Recognition Techniques
and Applications in Medical Imaging (MCV ’12), 263–272.

GARRIDO, P., VALGAERT, L., WU, C., AND THEOBALT, C. 2013.
Reconstructing detailed dynamic face geometry from monocular
video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 32, 6,
158:1–158:10.

GARRIDO, P., VALGAERTS, L., REHMSEN, O., THORMÄHLEN,
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