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Figure 1. We propose multi-frame self-supervised training of a deep network based on in-the-wild video data for jointly learning a face
model and 3D face reconstruction. Our approach successfully disentangles facial shape, appearance, expression, and scene illumination.

In this supplemental document, we provide more details
on the network architecture and the empirically determined
weights in the employed loss function. We also show more
qualitative and quantitative comparisons and discuss limi-
tations of our approach. In addition, we describe how to
extract statistics from the learned model and visualize its
modes. A large amount of qualitative results can also be
found on the submitted webpage in the supplemental mate-
rial.

1. Network Details

We provide further details of the feature extraction,
shared identity and parameter estimation network in Tab. I,
2 and 3, respectively. Overall, our network has 124M pa-
rameters. Note that a subset of these parameters includes
the learned geometry and appearance model.

1.1. Visualizing the Modes of Variation

While the learned model is an optimal basis for the
monocular face reconstruction task, it does not allow for an
intuitive analysis of the most prominent modes of variation
observed in the data. However, we can easily reparameter-
ize the learned model and construct a new representation us-
ing e.g. Principle Component Analysis (PCA). More specif-
ically, we compute PCA on 3D reconstructions obtained by
our approach for over 10k images of our training set. Note,
our approach is trained in a self-supervised manner without
requiring ground truth in the form of dense geometry and
appearance annotations. The new parametrization allows us
to build a statistical face model of facial identity and ap-
pearance, as in [ ], but based on in-the-wild video data, see

Figure 2. Visualization of the Reflectance Model. We show four
of the learned modes.

Fig. 2, 3 and 4. Our model learns global variation modes
that roughly correspond to gender (see Fig. 2, 3) as well as
local variation modes, such as nose and eye deformations
(see Fig. 3, 4). The visualization also shows the separation
between the learned shape identity model and the expres-
sion model.

2. Weights of the Energy

We found the weights in our energy empirically and kept
them fixed in all experiments: Apho = 1.6/|V|, Aan =



Table 1. Feature Extractor Network Details. 1 means that the input is taken from the layer in the row above.

Input Layers Activation Shape | Siamese Output
Image (240, 240, 3) | Conv2D (kernel 11x11, stride 4) + ReLU (60, 60, 96) Yes unnamed
T MaxPool (kernel 3x3, stride 2) (29, 29, 96) n/a unnamed
T Conv2D (kernel 5x5, stride 1) + ReLU (14, 14, 256) Yes unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes lowFeatures ¢
T Conv2D (kernel 3x3, stride 2) + ReLU (7,7,256) Yes unnamed
T Conv2D (kernel 3x3, stride 2) + ReLU (4, 4,256) Yes mediumPFeatures ¢
Table 2. Shared Identity Network Details. 1 means that the input is taken from the layer in the row above.
Input Layers Activation Shape | Siamese Output
lowFeaturesg . s Concat M, 4, 4, 256) n/a unnamed
T MeanPool 4, 4, 256) n/a unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU 4,4, 384) No unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU 4, 4, 256) No unnamed
1T Fully Connected + ReLU (1000, 1) No unnamed
T Fully Connected + ReLU (1000, 1) No unnamed
T Fully Connected (500 + 500, 1) No shapeParam + reflectanceParam
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Figure 3. Visualization of the Shape Model. We show four of the
learned modes.

4.7, Agmo = 0.001, Ay = le—7, Apie = le—8.

3. Results

In the following, we show more detailed qualitative and
quantitative evaluations of our approach.

Monocular vs multi-frame reconstruction Figure 5
shows the advantage of using multiple frames at test time.
Multi-frame reconstruction improves overall consistency of
the estimated 3D face and resolves ambiguity due to occlu-
sions that are present in one of the images. Such ambiguities
cannot be resolved completely when feeding only a single

Figure 4. Visualization of the Shape Model. We show two of the
learned modes from a side view.

image to the network. Still, our network is able to obtain
plausible facial identity for the monocular case thanks to
our multi-frame based training.

Comparison to state-of-the-art methods Fig. 6, 7, 8
and 9 show more comparisons to related state-of-the-art ap-
proaches for monocular 3D face reconstruction. Our multi-
frame based training succeeds in reconstructing 3D faces
for images with large poses and harsh yet low-frequency il-
lumination, as shown in Fig. 6. The method of Tewari et
al. [8] is unable to deal with these cases, as it is trained
on monocular images. Fig. 7 shows that our approach also
generalizes well to facial identities having beards and non-
average faces thanks to the learning of the optimal model



Table 3. Parameter Estimation Network Details. 1 means that the input is taken from the layer in the row above.

Inputs Layers Activation Shape | Siamese Output
shapeParam, reflectanceParam Fully Connected + ReLU + Reshape (14,14, 1) No unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) No unnamed
7, lowFeatures ¢ Concat (14, 14, 768) n/a unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
T Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 256) Yes unnamed
T MaxPool(kernel 3x3, stride 2) (6, 6, 256) Yes unnamed
T Fully Connected + ReLU (2048, 1) Yes unnamed
T Fully Connected 6+64+27,1) Yes rigidy + expressionParam ¢+
illuminationParam ¢
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Figure 5. Monocular vs. multi-frame reconstruction. Multi-view
reconstruction improves consistency and reconstruction quality,
especially for regions occluded in one of the images. Note that

all results are shown with a frontal pose and neutral expression for
comparison purposes.
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from in-the-wild data. On the contrary, methods relying
on synthetic data [5, 7] and/or an underlying 3DMM [9],
fail to generalize to novel identities not explained by the
3D model or training corpus. Our approach not only es-
timates 3D faces from challenging in-the-wild images, but
also successfully disentangles facial geometry, reflectance
and scene illumination. Fig. 8 and 9 show that we obtain a
fairly clean reflectance estimation, up to a small global scal-
ing factor. Current state-of-the-art methods, on the contrary,
only estimate facial texture that bakes in shading effects
[11, 2]. We remark that our approach learns a reflectance
model from scratch using only a colored template mesh,
whereas the method of Booth et al. [2] require a 3DMM
as initialization to learn a texture model, see Fig. 9.
Quantitative evaluations = We quantitatively evalu-
ate the photometric error of our approach on 1000 images
of the CelebA dataset [4], see Fig. 11 and Tab. 4. We
achieve lower errors when using larger models for shape
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Figure 6. Comparison to Tewari et al. [8]. Multi-frame based train-

ing improves illumination estimation. Our approach also outper-
forms that of Tewari et al. when the face is largely occluded.

and appearance. We also obtain lower errors compared to
the 3DMM-based optimization approach presented in [3].
This demonstrates better generalization capabilities of our
learned shape and appearance models to in-the-wild images,



Table 4. Average photometric error (R,G,B € [0, 255]) over 1000 images of the CelebA[4] dataset. Size refers to the number of vectors in
our learned shape and appearance models. Larger models lead to lower errors. Our method outperforms [3] which reconstructs faces using
an existing face model [1].

Ours [3]
Size M=0 | M=10 | M=50 | M=125 | M=500 | M=80
Mean 32.54 23.13 21.27 20.71 20.65 21.95
SD 8.88 6.66 6.15 6.04 6.04 5.60
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Figure 7. Comparison to [6, 7, 9]. These approaches are con-
strained by the (synthetic) training corpus and/or underlying 3D
face model. Our optimal learned model produces more accurate
results, since it is learned from a large corpus of real images.

compared to the fixed face model [1] used by [3].

Fig. 12 shows the quantitative evaluation of our geome-
try reconstruction on 324 images of the BU-3DFE dataset
[12]. Training on multiple frames consistently improves re-
construction quality. Multi-frame reconstruction with two
images at test time also increases reconstruction quality
compared to the monocular reconstruction case. We remark
that our approach outperforms that of Tewari et al. [9, 8] on
this dataset.

4. Limitations

In this paper, we have proposed a multi-frame self-
supervised deep learning approach that jointly learns a 3D
face model (3D geometry and facial identity) and recon-
structs 3D faces from in-the-wild videos. Although we have
shown compelling results, our approach still has a few limi-
tations that can be addressed in follow-up work, see Fig. 10.
Overall our approach can deal with large head poses quite

Ours Tran 18 Ours Tran18 Ours

Tranl8

Figure 8. In contrast to Tran et al. [10], we estimate better geome-
try and separate reflectance from illumination. Note, the approach
of Tran et al. does not disentangle reflectance and shading.

well. Still, reconstructing extreme poses is a hard task in
itself that challenges all face reconstruction techniques. Oc-
clusions, e.g., by accessories or thick facial hair might ad-
versely impact the reconstruction quality of our approach.
Facial hair, such as beards are modeled in the reflectance
channel, and thus are not reconstructed in a physically cor-
rect manner. Even though our multi-frame supervision ap-
proach can obtain quite clean reflectance estimates that are
free of shading, there is still a remaining global scale am-
biguity between illumination and reflectance. As such, the
global skin tone can not be reliably disentangled from the
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Figure 9. In contrast to the texture model of Booth et al. [2] that
contains shading, our approach estimates a reflectance model.
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Figure 10. Limitations of our approach. From top to bottom: Ex-
treme illumination conditions, severe occlusions by accessories,
thick facial hair, non-average facial shapes, scale ambiguity be-
tween illumination and reflectance, and extreme head poses.

general ambient brightness of the illumination. Strong and
colorful directional illumination outside the norm might
also harm the estimation of 3D faces. Specular reflections
and cast shadows are currently not modeled by our differen-
tiable renderer, and thus they might slightly be baked into
the reflectance channel. Non-standard facial shapes chal-
lenge our approach. We remark that all of these are difficult
settings for almost any face reconstruction technique. Our
approach already handles the aforementioned cases quite
well by learning from in-the-wild videos without any sort
of explicit 3D supervision.
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Figure 11. Quantitative evaluation of photometric error on the CelebA [4] dataset. Size is the number of learnable vectors in our shape
and appearance models. Our method outperforms [3] which uses an existing model for reconstruction. The numbers are the average
photometric errors (R,G,B € [0, 255]) over 1000 images of the CelebA[4] dataset.
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Figure 12. Quantitative evaluation on the BU-3DFE [12] dataset. The numbers are the geometric reconstruction errors averaged over 324
meshes. M is the size of the multi-frame images used at training time. Multi-frame inputs at training and at testing time help in obtaining
better reconstructions.



